

Laboratory Manual

2023-24

Sub-Computer Networks-II

SY B. Tech. (CSE)

Prepared by:

Prof. Renushe A.H

G. K. GUJAR CHARITABLE

TRUST’S

Dr. Ashok Gujar Technical Institute’s

Dr. Daulatrao Aher College of

Engineering, Karad

Prepared by :Mrs. A. H. Renushe

Approved by:

Head of Department

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S
DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual

Subject : Computer Networks--II

TITLE : Index (List of Experiment)

ExptNo. Title of Experiment Program

Outcomes

Mapped

1 Program using UDP to connect to well known services (echo, time

of the day service).

1,2

2 Implementation of concurrent TCP multiservice client/server

Design

1,2,6

3
Implementing Iterative UDP client/server

1,2

4
Study of DNS Tools with all its options. nslookup, dig, host,whois

1,2

5
Study of trivial file transfer protocol (TFTP).

1,2

6
Configuration of basic service for FTP on Linux Platform

1,2,3,5

7
Configuration of basic service HTTP (Apache2) on Linux Platform

1,2,3,5

8
Configuration of basic service Telnet on Linux Platform

1,2,3

9 Study of Simple mail Transfer Protocol 1,2

10
Capturing & Analyzing operation of various application layer

protocols using network protocol analyzer. (Wireshark and

tcpdump)

1,2,5,6

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 01 TITLE: Program using UDP to connect to well known services (echo, time of the

day service).

Aim: To implement Programs for UDP to connect to well known services (echo, time of the day

service).

Theory:

The DAYTIME Service

The TCP/IP standards define an application protocol that allows a user to obtain the date and time

of day in a format fit for human consumption. The service is officially named the DAYTIME

service.

To access the DAYTIME service, the user invokes a client application. The client contacts a

server to obtain the information, and then prints it. Although the standard does not specify the

exact syntax, it suggests several possible formats. For example, DAYTIME could supply a date in

the form:

Weekday, month day, year time-timezone like

Thursday, February 22, 1996 17:37:43-PST

The standard specifies that DAYTIME is available for both TCP and UDP. In both cases, it

operates at protocol port 13.

The TCP version of DAYTIME uses the presence of a TCP connection to trigger output: as soon

as a new connection arrives, the server forms a text string that contains the current date and time,

sends the string, and then closes the connection. Thus, the client need not send any request at all.

In fact, the standard specifies that the server must discard any data sent by the client.

The UDP version of DAYTIME requires the client to send a request. A request consists of an

arbitrary UDP datagram. Whenever a server receives a datagram, it formats the current date and

time, places the resulting string in an outgoing datagram, and sends it back to the client. Once it

has sent a reply, the server discards the datagram that triggered the response.

The ECHO Service :

TCP/IP standards specify an ECHO service for both UDP and TCP protocols. At first glance,

ECHO services seem almost useless because an ECHO server merely returns all the data it

receives from a client. Despite their simplicity, ECHO services are important tools that network

managers use to test reachability, debug protocol software, and identify routing problems.

The TCP ECHO service specifies that a server must accept incoming connection requests, read

data from the connection, and write the data back over the connection until the client terminates

the transfer. Meanwhile, the client sends input and then reads it back.

Daytime client Algorithm:

STEP 1: Start the program.

STEP 2: Declare the variables and structure.

STEP 3: Socket is created and connect function is executed.

STEP 4: If the connection is successful then server sends the message.

STEP 5: The date and time is printed at the client side.

STEP 6: Stop the program.

Daytime Server Algorithm:

STEP 1: Start the program.

STEP 2: Declare the variables and structure for the socket..

STEP 3: The socket is binded at the specified port.

STEP 4: Using the object the port and address are declared.

STEP 5: The listen and accept functions are executed.

STEP 6: If the binding is successful it waits for client request.

STEP 7: Execute the client program.

ECHO Client Algorithm:

 STEP 1: Start

 STEP 2: Declare the variables for the socket

 STEP 3: Specify the family, protocol, IP address and port number

 STEP 4: Create a socket using socket () function

 STEP 5: Call the connect () function

 STEP 6: Read the input message

 STEP 7: Send the input message to the server

 STEP 8: Display the server’s echo

 STEP 9: Close the socket

 STEP 10: Stop

https://1.bp.blogspot.com/_Gmn-kEVg3hk/SyhpPlQYMBI/AAAAAAAABE4/ZcLZ8_pa8zI/s1600-h/Free+C+programming+Source+code+in++c+client+server+Day+time.jpg

ECHO Server Algorithm:

 STEP 1: Start

 STEP 2: Declare the variables for the socket

 STEP 3: Specify the family, protocol, IP address and port number

 STEP 4: Create a socket using socket () function

 STEP 5: Bind the IP address and Port number

 STEP 6: Listen and accept the client’s request for the connection

 STEP 7: Read and Display the client’s message

 STEP 8: Stop

Conclusion: Thus we have implemented Program for UDP to connect to well known services

(echo, time of the day service).

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 02 Title: Implementation of concurrent TCP multiservice client/server Design

 Aim: To implement concurrent TCP multiservice client/server Design.

 Theory:

 A connection oriented, Multiservice server Design

 A connection –oriented, multiservice server can also follow an iterative algorithm.

 In principle, such a server performs the same tasks as a set of iterative, connection-oriented

servers. To be more precise, the single process in multiservice server replaces the master server

processes in a set of connection –oriented servers. At the top level, the multiservice server uses

asynchronous I/O to handle its duties

When it begins execution, the multiservice servers creates one socket for each service it offers,

bind each socket to the well known port for the service ,and uses select to wait for an incoming

connection request on any of them. When one of the sockets become ready, the server calls accept

to obtain the new connection that has arrived .Accept creates a new socket for the incoming

connection . the server uses yhe new socket to interact with a client, and then closes it. Thus,

besides one master socket for each service ,the server has at most on additional socket open at

any time.

A concurrent, Connection-oriented, multiservice server:

The procedure called by a multiservice server when a connection request arrives can accept and

handle the new connection directly (making the server iterative), or it can create a slave process to

handle it (making the server concurrent).

In an iterative implementation, once the procedure finishes communicating with the client, it

closes the new connection. In the concurrent case, the master server process closes the connection

as soon as it has created a slave process; the connection remains open in the slave process.

Conclusion: Thus we have studied and implemented the concurrent TCP multiservice

client/server Design.

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 03 Title: Implementing Iterative UDP client/server

Aim: to implement Iterative UDP client/server

Theory:

Iterative servers work best for services that have a low request processing time. Because connection-

oriented transport protocols like TCP have higher overhead than connectionless transport protocols like

UDP, most iterative servers use connectionless transport. Creation of a socket for an iterative,

connectionless server proceeds in the same way as for a connection-oriented server. The server's socket

remains unconnected and can accept incoming datagram’s from any client.

Forming A Reply Address In A Connectionless Server:

The sendto socket call to specify both a datagram to be sent and an address to which it should go. Sendto

has the form:

 retcode = sendto(s , message, len, flags, toaddr, toaddrlen);

where s is an unconnected socket, message is the address of a buffer that contains the data to be sent, len

specifies the number of bytes in the buffer, flags specifies debugging or control options, toaddr is a pointer

to a sockaddr_in structure that contains the endpoint address to which the message should be sent, and

toaddrlen is an integer that specifies the length of the address structure.

The call, recvfrom, takes two arguments that specify two buffers. The system places the arriving datagram

in one buffer and the sender's address in the second buffer. A call to recvfrom has the form:

retcode = recvfrom(s, buf, len, flags, from, fromlen);

where argument s specifies a socket to use, buf specifies a buffer into which the system will place the next

datagram, len specifies the space available in the buffer, from specifies a second buffer into which the

system will place the source address, and fromlen specifies the address of an integer. Initially, fromlen

specifies the length of the from buffer. When the call returns, fromlen will contain the length of the source

address the system placed in the buffer. To generate a reply, the server uses the address that recvfrom

stored in the from buffer when the request arrived.

Conclusions: Thus we have studied and implemented the Iterative UDP client/server.

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 04 Title: Studyof DNS Tools with all its options. nslookup, dig, host,whois

 Aim: To study DNS Tools with all its options. nslookup, dig, host,whois

 Theory:

 DNS working:

 Computer and other network devices communicate by IP address. It would be hard to remember

the IP address of every website or resource you access, words are easier to remember. DNS will

take the easy to remember name and map it to the IP address so devices can communicate.

 Computer uses DNS to resolve names steps below:

1. User types in google.com into their browser. This will send a query to the DNS server to go

fetch the IP address for google.com

2. The DNS server that the client uses may not know the IP address. This can be your local Active

Directory DNS server or your ISP DNS server. If it doesn’t know the IP address of the domain it

will forward it on to the next DNS server.

3. The next DNS server says it knows the IP address and sends the request back to the computer.

4. The computer is then able to communicate to google.com.

The nslookup Command:

nslookup is a network administration command-line tool available in many computer operating

systems for querying the Domain Name System (DNS) to obtain domain name or IP address

mapping, or other DNS records. The name "nslookup" means "name server lookup."

The command does not use the operating system's local Domain Name System resolver library to

perform its queries, and thus may behave differently from dig, which it does. Additionally,

vendor-provided versions may include output of other sources of name information, such as host

files and Network Information Service. Some behaviors of nslookup may be modified by the

contents of resolv.conf.

Syntax:

nslookup [OPTION] [name | -] [server]

$ nslookup deltacollege.edu

The dig Command:

The dig command stands for Domain Information Groper. It is a network administration

command-line tool for querying the Domain Name System (DNS). The dig command is useful for

network troubleshooting and for educational purposes. It can operate based on command line

option and flag arguments, or in batch mode by reading requests from an operating system file.

When a specific name server is not specified in the command invocation, it uses the operating

system's default resolver, usually configured in the file resolv.conf. Without any arguments it

queries the DNS root zone.

Syntax: dig [OPTIONS]

The host Command:The host command in Linux system is used for DNS (Domain Name System)

lookup. It is used to find the IP address of a particular domain name, or if you want to find out the

domain name of a particular IP address the host command becomes handy. You can also find

more specific details of a domain by specifying the corresponding option along with the domain

name.

Syntax:

host [OPTIONS] hostname

$ host -v deltacollege.edu

WHOIS command:

 is a TCP-based query and response protocol that is commonly used to provide information

services to Internet users. It returns information about the registered Domain Names, an IP

address block, Name Servers and a much wider range of information services.

In Linux, the whois command line utility is a WHOIS client for communicating with the WHOIS

server (or database host) which listen to requests on the well-known port number 43, which stores

and delivers database content in a human-readable format.

$ whois 216.58.206.46

Conclusion: Thus we have studied different DNS tools.

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 05 Title: Study of trivial file transfer protocol (TFTP).

 Aim: Study of trivial file transfer protocol (TFTP).

 Theory:

 There are occasions when we need to simply copy a file without the need for all of the

features of the FTP protocol. For example, when a diskless workstation or a router is

booted, we need to download the bootstrap and configuration files. Here we do not need

all of the sophistication provided in FTP. We just need a protocol that quickly copies the

files. Trivial File Transfer Protocol (TFTP) is designed for these types of file transfer. It is

so simple that the software package can fit into the read-only memory of a diskless

workstation. It can be used at bootstrap time. The reason that it fits on ROM is that it

requires only basic IP and UDP. However, there is no security for TFTP. TFTP can read

or write a file for the client. Reading means copying a file from the server site to the client

site. Writing means copying a file from the client site to the server site.

 There are five types of TFTP messages, RRQ, WRQ, DATA, ACK, and ERROR.

 RRQ :The read request (RRQ) message is used by the client to establish a connection for

reading data from the server.

 RRQ format:

The RRQ message fields are as follows:

 OpCode. The first field is a 2-byte operation code. The value is 1 for the RRQ message.

 File name. The next field is a variable-size string (encoded in ASCII) that defines the

name of the file. Since the file name varies in length, termination is signaled by a 1-byte

field of 0s.

 Mode. The next field is another variable-size string defining the transfer mode. The mode

field is terminated by another 1-byte field of 0s. The mode can be one of two strings:

“netascii” (for an ASCII file) or “octet” (for a binary file). The file name and mode fields

can be in upper- or lowercase, or a combination of both.

WRQ: The write request (WRQ) message is used by the client to establish a connection

for writing data to the server. The format is the same as RRQ except that the OpCode is

2.

WRQ format:

 DATA:

 The data (DATA) message is used by the client or the server to send blocks of data.

 DATA format:

 OpCode: The first field is a 2-byte operation code. The value is 3 for the DATA

message.

 Block number: This is a 2-byte field containing the block number. The sender of the

data (client or server) uses this field for sequencing. All blocks are numbered

sequentially starting with 1. The block number is necessary for acknowledgment as

we will see shortly.

 Data: This block must be exactly 512 bytes in all DATA messages except the last

block, which must be between 0 and 511 bytes. A non-512 byte block is used as a

signal that the sender has sent all the data. In other words, it is used as an end-of-file

indicator. If the data in the file happens to be an exact multiple of 512 bytes, the

sender must send one extra block of zero bytes to show the end of transmission.

Data can be transferred in either NVT ASCII (netascii) or binary octet (octet).

ACK:

The acknowledge (ACK) message is used by the client or server to acknowledge the

receipt of a data block.

ACK format:

 The ACK message fields are as follows:

 OpCode. The first field is a 2-byte operation code. The value is 4 for the ACK

message.

 Block number. The next field is a 2-byte field containing the number of the

block received.

Conclusion: thus we have studied the TFTP protocol.

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 06 Title: Configuration of basic service for FTP on Linux Platform

Aim: To Configure basic service FTP on Linux Platform

Theory:

File Transfer Protocol (FTP) is an application layer protocol that moves files between local and

remote file systems. It runs on the top of TCP, like HTTP. To transfer a file, 2 TCP connections

are used by FTP in parallel: control connection and data connection. Port number for data

connection is 20 and for control connection 21.

FTP stands for File Transfer Protocol. It is similar to HTTP (HyperText Transfer Protocol), in that

it specifies a language for transferring data over a network.

Step 1: Update System Packages

Start by updating your repositories – enter the following in a terminal window:

$ sudo apt update

Step 2: Install vsftpd Server on Ubuntu

A common open-source FTP utility used in Ubuntu is vsftpd

1.To install vsftpd, enter the command

$sudo apt install vsftpd

2. To launch the service and enable it at startup, run the commands:

sudo systemctl start vsftpd

sudo systemctl enable vsftpd

Step 3: Backup Configuration Files

Before making any changes, make sure to back up your configuration files

sudo cp /etc/vsftpd.conf /etc/vsftpd.conf_default

Step 4: Create FTP User

Create a new FTP user with the following commands:

$sudo useradd -m testuser

$sudo passwd testuser

Step 5: Configure Firewall to Allow FTP Traffic

sudo ufw allow 20/tcp

sudo ufw allow 21/tcp

Step 6: Connect to Ubuntu FTP Server

Connect to the FTP server with the following command:

Replace ubuntu-ftp with the name of your system (taken from the command line).

Log in using the testuser account and password you just set. You should now be successfully

logged in to your FTP server.

Configuring and Securing Ubuntu vsftpd Server:

Change Default Directory:

By default, the FTP server uses the /srv/ftp directory as the default directory. You can change this

by creating a new directory and changing the FTP user home directory.

To change the FTP home directory, enter the following:

sudo mkdir /srv/ftp/new_location

sudo usermod -d /srv/ftp/new_location ftp

Restart the vsftpd service to apply the changes:

sudo systemctl restart vsftpd.service

Authenticate FTP Users:

If you want to let authenticated users upload files, edit the vsftpd.conf file by entering the

following:

sudo nano /etc/vsftpd.conf

Find the entry labeled write_enable=NO, and change the value to “YES.”

Save the file, exit, then restart the FTP service with the following:

sudo systemctl restart vsftpd.service

Conclusion: Thus we have configured FTP server on Ubuntu.

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 07 Title: Configuration of basic service HTTP (Apache2) on Linux Platform

Aim: To configure HTTP (Apache2) on Linux Platform

Theory:

The Hypertext Transfer Protocol (HTTP) is a protocol used mainly to access data on the World

Wide Web. HTTP functions like a combination of FTP (Chapter 21) and SMTP (Chapter 23). It is

similar to FTP because it transfers files and uses the services of TCP. However, it is much simpler

than FTP because it uses only one TCP connection. There is no separate control connection; only

data are transferred between the client and the server. HTTP is like SMTP because the data

transferred between the client and the server look like SMTP messages. In addition, the format of

the messages is controlled by MIME-like headers. Unlike SMTP, the HTTP messages are not

destined to be read by humans; they are read and interpreted by the HTTP server and HTTP client

(browser). SMTP messages are stored and forwarded, but HTTP messages are delivered

immediately. The commands from the client to the server are embedded in a request message. The

contents of the requested file or other information are embedded in a response message. HTTP

uses the services of TCP on well-known port 80.

Installation and configuration of Apache Web Server on Ubuntu 20.04

The Apache HTTP server is the most widely-used web server in the world. It provides many

powerful features including dynamically loadable modules, robust media support, and extensive

integration with other popular software.

Step 1 — Installing Apache

-Updating local packages

$ sudo apt update

-Take a super user control by typing in a terminal

$ sudo-s

-Install the apache2 package

$ sudo apt install apache2

-Start Apache2 server

$service apache2 start

Go to browser in URL type http:loacalhost

-Stop Apache2 server

$ Service Apache2 stop

Alternative command to start apache service is:

Apachectl –k start

-Go to terminal and type

$ cp /var /www/html/index.html /var/www/html/second.html

$ gedit/var/www/html/index.html

Text editor will open

-Copy below html code in index.html file and save

<html>

<head>

<title> my first website</title>

</head>

</body>

<h1> my first demo website hosted on Apache2 web server</h1>

</body>

</html>

- Go to browser and type

http://Localhost

your own web site will displayed in browser

Conclusion: Thus we have configured and installed HTTP (Apache2) on Linux Platform.

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 08 Title: Configuration of basic service Telnet on Linux Platform

Aim: To install and configure basic service Telnet on Linux Platform

Theory:

TELNET is an abbreviation for TErminaL NETwork. It is the standard TCP/IP protocol for

virtual terminal service as proposed by ISO. TELNET enables the establishment of a connection

to a remote system in such a way that the local terminal appears to be a terminal at the remote

system.

Local Login: When a user logs into a local time-sharing system, it is called local login. As a user

types at a terminal or at a workstation running a terminal emulator, the keystrokes are accepted by

the terminal driver. The terminal driver passes the characters to the operating system. The

operating system, in turn, interprets the combination of characters and invokes the desired

application program.

Remote Login: When a user wants to access an application program or utility located on a remote

machine, he or she performs remote login. Here the TELNET client and server programs come

into use. The user sends the keystrokes to the terminal driver where the local operating system

accepts the characters but does not interpret them. The characters are sent to the TELNET client,

which transforms the characters to a universal character set called Network Virtual Terminal

(NVT) characters and delivers them to the local TCP/IP stack.

The commands or text, in NVT form, travel through the Internet and arrive at the TCP/IP stack at

the remote machine. Here the characters are delivered to the operating system and passed to the

TELNET server, which changes the characters to the corresponding characters understandable by

the remote computer. However, the characters cannot be passed directly to the operating system

because the remote operating system is not designed to receive characters from a TELNET server:

It is designed to receive characters from a terminal driver. The solution is to add a piece of

software called a pseudoterminal driver, which pretends that the characters are coming from a

terminal. The operating system then passes the characters to the appropriate application program.

Telnet installation and Configuration

$ sudo apt install telnetd xinetd

After running the above installation command, Terminal might prompt you with the y/n option.

To continue the procedure, hit y and then hit Enter. It will then install the Telnet server and

xinetd on your Ubuntu system.

After installation, the xinetd service starts automatically. You can view the status of the service as

follows:

$ sudo systemctl status xinetd.service

If the service does not start automatically, you can manually start it by running the command

below:

$ sudo systemctl start xinetd.service

Now create the /etc/xinetd.d/telnet file using the command below:

$ sudo nano /etc/xinetd.d/telnet

Add the below lines the file:

service telnet

{

disable = no

flags = REUSE

socket_type = stream

wait = no

user = root

server = /usr/sbin/in.telnetd

log_on_failure += USERID

}

Then save and close the file and restart xinetd.service as follows:

$ sudo systemctl restart xinetd.service

Telnet server uses port 23 for listening to the incoming connections. Therefore, you will need to

open this port in your firewall. Run the command below to do so:

$ sudo ufw allow 23

To allow incoming connections to port 23 from only a specific IP or subnet, run the below

command instead:

$ sudo ufw allow from <ip or subnet> to any port 23

-Installing Telnet Client on Ubuntu:

$ sudo apt install telnet

-Connect to Telnet Server from Remote System

$ telnet <server-ip>

To uninstall Telnet server, run this command:

$ sudo apt remove telnetd xinetd

To uninstall Telnet client, run this command:

$ sudo apt remove telnet

Conclusion: Thus we have configured and installed Telnet server on Linux Platform.

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 09 Title: Study of Simple Mail Transfer Protocol.

Aim: To study of Simple Mail Transfer Protocol

Theory:

 SMTP (MESSAGE TRANSFER AGENT):

The actual mail transfer is done through message transfer agents (MTAs). To send mail, a system

must have the client MTA, and to receive mail, a system must have a server MTA. The formal

protocol that defines the MTA client and server in the Internet is called Simple Mail Transfer

Protocol (SMTP).

 Fig: SMTP range

SMTP is used two times, between the sender and the sender’s mail server and between the two

mail servers. As we will see shortly, another protocol is needed between the mail server and the

receiver. SMTP simply defines how commands and responses must be sent back and forth.

Commands and Responses

SMTP uses commands and responses to transfer messages between an MTA client and an MTA

server.

Fig: Commands and responses

Commands:

Commands are sent from the client to the server. The format of a command is shown below: It

consists of a keyword followed by zero or more arguments.

 HELO: This command is used by the client to identify itself. The argument is the domain

name of the client host. The format is

 HELO: challenger.atc.fhda.edu

 MAIL FROM. This command is used by the client to identify the sender of the message.

The argument is the e-mail address of the sender (local part plus the domain name). The

format is

 MAIL FROM: forouzan@challenger.atc.fhda.edu

 RCPT TO. This command is used by the client to identify the intended recipient of the

message. The argument is the e-mail address of the recipient. If there are multiple

recipients, the command is repeated. The format is

RCPT TO: betsy@mcgraw-hill.com

 DATA. This command is used to send the actual message. All lines that follow the DATA

command are treated as the mail message. The message is terminated by a line containing

just one period.

The format is

 DATA

 This is the message to be sent to the McGraw-Hill Company.

 QUIT. This command terminates the message. The format is

QUIT

 RSET. This command aborts the current mail transaction. The stored information about

the sender and recipient is deleted. The connection will be reset.

RSET

 VRFY. This command is used to verify the address of the recipient, which is sent as the

argument. The sender can ask the receiver to confirm that a name identifies a valid

recipient. Its format is

VRFY: betsy@mcgraw-hill.com

 NOOP. This command is used by the client to check the status of the recipient. It requires

an answer from the recipient. Its format is

NOOP

 TURN. This command lets the sender and the recipient switch positions, whereby the

sender becomes the recipient and vice versa. However, most SMTP implementations

today do not support this feature. The format is

TURN

mailto:forouzan@challenger.atc.fhda.edu
mailto:betsy@mcgraw-hill.com
mailto:betsy@mcgraw-hill.com

 EXPN. This command asks the receiving host to expand the mailing list sent as the

arguments and to return the mailbox addresses of the recipients that comprise the list. The

format is

EXPN: x y z

 HELP. This command asks the recipient to send information about the command sent as

the argument. The format is

HELP: mail

 SEND FROM. This command specifies that the mail is to be delivered to the terminal of

the recipient, and not the mailbox. If the recipient is not logged in, the mail is bounced

back. The argument is the address of the sender. The format is

SEND FROM: forouzan@fhda.atc.edu

 SMOL FROM. This command specifies that the mail is to be delivered to the terminal or

the mailbox of the recipient. This means that if the recipient is logged in, the mail is

delivered only to the terminal. If the recipient is not logged in, the mail is delivered to the

mailbox. The argument is the address of the sender. The format is

SMOL FROM: forouzan@fhda.atc.edu

 SMAL FROM. This command specifies that the mail is to be delivered to the terminal and

the mailbox of the recipient. This means that if the recipient is logged in, the mail is

delivered to the terminal and the mailbox. If the recipient is not logged in, the mail is

delivered only to the mailbox. The argument is the address of the sender. The format is

 SMAL FROM: forouzan@fhda.atc.edu

Conclusion: Thus we have studied commands of Simple mail Transfer Protocol.

mailto:forouzan@fhda.atc.edu
mailto:forouzan@fhda.atc.edu

G.K. Gujar Memorial Charitable Trust’s

DR.ASHOK GUJAR TECHNICAL INSTITUTE’S

DR. DAULATRAO AHER COLLEGE OF ENGINEERING, KARAD

Lab Manual
Subject : Computer Networks-II

Expt. No: 10 Title: Capturing & Analyzing operation of various application layer protocols

using network protocol analyzer. (Wireshark and tcpdump).

Aim: To Capture & Analyze operation of various application layer protocols using network

protocol analyzer. (Wireshark and tcpdump).

Theory: Wireshark is an open-source network protocol analyzer that helps us to see what is

happening inside a network when we try to communicate with other networks. Currently,

Wireshark is the most famous application to analyze networks. Wireshark is a software tool used

to monitor the network traffic through a network interface.

Purposes:

• Network administrators use it to troubleshoot network problems

• Network security engineers use it to examine security problems

• QA engineers use it to verify network applications

 • Developers use it to debug protocol implementations

• People use it to learn network protocol internals

Configuring and Installing Wireshark on Ubuntu 20.04

Step 1: Update APT

$ sudo apt update

$ sudo apt upgrade

Step 2: Download and Install Wireshark

$ sudo apt install wireshark

Step 3: Enable Root Privileges

When Wireshark installs on your system, you will be prompted by the following window. As

Wireshark requires superuser/root privileges to operate, this option asks to enable or disable

permissions for all every user on the system. Press the “Yes” button to allow other users, or press

the “No” button to restrict other users from using Wireshark.

Step 4: Launch Wireshark

In the terminal window, type the following command to start the Wireshark application.

$ wireshark

After executing this command in terminal following window will open

Installing Wireshark:

First update the APT package repository cache with following command:

$ sudo apt update

$ sudo apt install wireshark

Press y on keyboard

$ sudo usermod –aG wireshark $(whoami)

$ sudo reboot

Starting wireshark:

$ wireshark

Then wireshark window will start

Capturing packets using wireshark:

When you start wireshark you will see a list of interfaces that you can capture packets to and

from network.

Configuring and Installing TCPdump on Ubuntu 20.04

TCPdump is a free and open–source packet analyzer tool and command-line utility.It is used

capturing the packets and inspect the network traffic going to and from our system. It is basic

used for troubleshooting network issue and security testing. We can capture Non-TCP traffic such

asUDP,ARP or ICMP.

Step1: Update the system

Apt-get update

Step2:Install TCPdump on system

Apt-get install tcpdump

Check the TCPdump version

Tcpdump --version

Step3: TCPdump syntax and Examples

Tcpdump [options][expression]

To capture all packets:

$tcpdump

To capture packets from any interface:

tcpdump -i any

Conclusion: Thus we have studied Capturing & Analyzing operation of various application layer

protocols using network protocol analyzer (wireshark and TCPdump)

OOP Lab Manual

AGTI’s, DACOE Karad Page 1

G. K. Gujar Memorial Charitable Trust‟s,

Dr. Ashok Gujar Technical Institute‟s

Dr. Daulatrao Aher College of Engineering, Karad.

Department of Computer Science & Engineering

Object Oriented Programming

Lab Manual

Academic year (2023-2024) IV SEMESTER

Procedure for performing experiments

a) Explanation by the faculty using OHP/PPT covering the following aspects: 20 min.

1) Aim of the experiment

2) Software/Inputs required

3) Algorithm

4) Test Data

b) Writing of source program by the students 20 min.

c) Compiling and execution of the program 60 min.

d) Assessment 20 min

Format of First Page

Name :

Student Roll No # :

Experiment # :

Experiment Title :

Date of Experiment :

Date of Submission :

OOP Lab Manual

AGTI’s, DACOE Karad Page 2

Student Responsibilities

1. In the very beginning of the laboratory work, the student has to do programming

individually. For this reason, regular attendance is strictly required.

2. Every laboratory session is divided into two parts. In the first part, the instructor will

be lecturing on the test objective, procedure and data collection. In the second part, the

students, organized in groups (individual student), are required to do the

programming. In order to perform the experiment within the assigned period, and to

gain the maximum benefit from the experiment, the students must familiarize

themselves with the purpose, objective, and procedure of the experiment before

coming to the laboratory. Relevant lecture notes and laboratory manual should be

studied carefully and thoroughly.

3. At the end of the experiment, every student should submit the written algorithm &

programs & testes result for approval by the instructor.

4. It should be understood that laboratory facilities and equipment‟s (Hardware &

Software) are provided to enhance the learning process.

5. The equipment‟s must be properly cared after every laboratory session. Also, students

should always take precautions to avoid any possible hazards. Students must follow

laboratory regulations provided at the end of this section.

OOP Lab Manual

AGTI’s, DACOE Karad Page 3

G. K. Gujar Memorial Charitable Trust‟s,

Dr. Ashok Gujar Technical Institute‟s

Dr. Daulatrao Aher College of Engineering, Karad.

Department of Computer Science & Engineering

EXPERIMENT LIST

Department: Computer Science and Engineering Academic Year: 2023-24

Class: Second Year (SY BTech CSE) Semester: IV

Subject: Object Oriented Programming Semester Duration: 6 months

Expt.

No.
TITLE OF THE EXPERIMENT

1
Study and comparison of Procedure Oriented Programming & Object Oriented Programming

features with an example.

2 Introduction of Object Oriented Programming and Implementation of sample C++ program.

3 Implementation of Constructor & Destructor.

4

Implementation of Function Overloading and Constructor Overloading

5
Implementation of Operator Overloading.

6
Implementation of Multilevel Inheritance.

7
Implementation of Multiple Inheritance.

8
Implementation of Hierarchical Inheritance.

9 Implementation of Friend Function and Friend Class.

 Review - I

10 Implementation of Virtual Function and Virtual Class.

11 Implementation of Student database using concept of File Handling.

12 Implementation of Conversion of Polish Expressions.

13 Implementation of Searching Algorithms using Function Template and Virtual Function.

OOP Lab Manual

AGTI’s, DACOE Karad Page 4

14 Implementation of Sorting Algorithms using Function Template and Virtual Function.

15 Implementation of Stack using Class Template.

16 Implementation of Queue using Class Template.

17 Implementation of Exception Handling.

18 Implementation of different programs by using C++ graphics libraries for graphics purpose.

Review - II

 Submission

INRODUCTION TO C++ PROGRAMMING

Title: Introduction to Object Oriented Programming language.

Objective:

Learn the fundamentals of C++ programs

Prerequisites: Procedure Oriented Language i.e Fundamentals of C Language

Theory:

While writing the C++ program, there is need to follow the rules which are specified as follows:

1) Use of modern way of writing C++ programs

2) Rules for declaring the local variables.

3) Following the rule No Default to int

4) Use of new C++ headers

5) Use of the namespace std and working with an old and new compilers

The old-style c++ program has the following structure:

#include<iostream.h>

int main()

{

//statements

return (0);

}

The new-style c++ program has the following structure:

#include<iostream>

Using namespace std;

int main()

{

//statements

return (0);

OOP Lab Manual

AGTI’s, DACOE Karad Page 5

}

The key differences between old-style and modern code has two features: 1) new-style headers and

the namespace statement. A simple C++ program to display the addition of two numbers is

#include <iostream>

using namespace std;

int main()

{

int n1, n2,ans;

cout<<”enter any two numbers”;

cin>>n1>>n2;

ans = n1 + n2;

cout<<”the addition = “<<ans; return(0); }

Program Features: The C++ program is a collection of functions as like that of C program. The

above example contains the main function only. The execution is initiated with the main (), every

C++ program must have function main ().

1) Comments: C++ programming language contains two types of comments: 1) single line

comment (example // program title – addition of two numbers) and 2) multiline comments,

written as

/*

*/

2) The iostream file- #include <iostream>, this directives causes the preprocessors to add the

contents of the iostream file to the program. It contains declarations for the identifier cout, cin and

the operator output operator “<<”, input operator “>>”. This file should be included at beginning of

all programs that uses the input/output statements.

3) Namespaces – namesspaces are the declarative region, used to localize the names of the

identifiers to avoid the name collisions. Elements declared in one namespace are different from the

elements which are declared in other namespace. To include the name in C++ program, there is need

to use statement “using namespace <namespace_name>”. in program std namespace is used to

include the names of the C++ library functions to define them as global for the C++ programs.

4) Input / Output statements:

The output statement is used as cout with operator “<<”. The identifier cout is a predefined

object that represents the standard output stream in C++. The standard output stream is

referred to the screen/o/p device. The operator “<<” is called the insertion or put to operator

or output operator.It inserts or sends the contents of the variable on its right to the left side

of it to the object. The operator “<<” is also called as left-shift operator, used to shift the data

from the variable to device.

OOP Lab Manual

AGTI’s, DACOE Karad Page 6

Theinput statement is used as cin>>n1, this causes the program to wait for the user to give

the input which will be stored into variable n1. The identifier cin is predefined object in C++

that corresponds to the standard input stream. The input stream is referred to the keyboard.

The operator “>>” is called as extraction/get from /input operator that extracts data from

keyboard and assigns it to the variable present at the right side of it. The both input “>>” and

output “<<” operators can be overloaded.

5) Declaring local variables – in C89 standard, the variables must be declared at the beginning of

the program whereas the C99 standard allows declaration of variables anywhere in a program when

even there is need to use them in application logic. The encapsulation of code and data make it sense

to

declare variables close to the position from where they are used instead of declaring them at the

beginning of the program. Therefore, it is possible to avoid the accidental use of variables and this

approach is used in program which contains larger functions but it is harder to maintain the

programs.

6) No Default to int –C89 and the original specifications of C++ language states that, when no

explicit data type is specified in the declaration, then type “int” is assumed. This rule is called as

“default – to – int” this default-to-int rule is dropped from C99 standard, and there is need to specify

the type. This rule is applicable mostly to the function declaration, therefore in C99 standard while

declaring the function there need to specify the return datatype even though function returns value

of “int” type. As a practical matter, nearly all C and C++ compilers provides support to this rule.

Functions in C++
1) The Main Function

2) Function Prototyping

3) Approach to call function: call by value, call by reference

4) Default arguments

5) const arguments

6) Function overloading

7) Use of other library functions

8) Nesting of member functions

Cout << variable1

< Variable Cout -

Output Device

Screen

OOP Lab Manual

AGTI’s, DACOE Karad Page 7

Problem Statements: Implement the following C++ programs.

1) Write a program to display the average of three numbers.

2) Write a C++ program to generate the mathematical calculator.

3) Write a C++ program to display the count of odd, even and divisible by 5 numbers with in the

specified range from 1 to 100.

4) Write a C++ program to find out even and odd number.

Theory Questions

1) What is meant by Object Oriented Programming?

2) Explain the difference between C & C++ & Old style Vs modern Style C++

3) What is the use of Namespaces concept in C++.

EXPERIMENT NO: 1

Title: - Study and comparison of procedure oriented programming & Object oriented programming

features with an example.

Aim: -To study comparison of procedure oriented programming & Object oriented programming

features.

Theory:

Conventional programming using languages such as COBOL FORTRAN and C is

commonly known as procedure oriented programming. In procedure oriented approach the problem

is viewed as sequence of things to be done such as reading calculating and printing. A number of

functions are written to accomplish these tasks. The primary focus is on functions.

Procedure oriented programming basically consist of writing a list of instructions for the

computer to follows, and organizing these instructions in to group known as functions. We normally

use flowcharts to organize these actions and represent the flow of control from one action to

another.

While we concentrate on the development of functions very little attention is given to the

data that are being used by various functions. In a multi function program many important data item

are placed as global so that they may be accessed by all the functions. Each function may have its

own local data.

Global data are more vulnerable to an inadvertent change by functions in a large

programming it is too difficult to identify what data is used by which functions. In case we need to

revise an external data structure, we should also revise all function that accesses the data. This

provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that it does not model real

OOP Lab Manual

AGTI’s, DACOE Karad Page 8

world problems very well. His is because functions are action oriented and do not really

corresponding to the element of the problem.

The striking features of Procedure-Oriented Programming are:

 Emphasis is on doing things(Algorithm)

 Large programs are divided in to smaller programs known as functions.

 Most of the functions share global data.

 Data move openly around the system from function to function.

 Function transforms data from one form to another

 Employs top-down approach in program design

Object Oriented Programming treats data as a critical element in the program development

and does not allow it too freely around the system. It ties data more closely to the functions that

operate on it and protects it from accidental modification from outside functions. Object Oriented

Programming allows decomposition of a problem into a number of entities called „Objects‟ and

builds data and function around these objects.

The striking features of Object-Oriented Programming are:

 Emphasis is on data rather than procedure

 Programs are divided into objects.

 Data structures are designed such that they characterize the objects.

 Functions that operate on the data of an object are tied together in the data structure.

 Data is hidden and cannot be accessed by external functions.

 Objects may communicate with each other through functions.

 New data and functions can be easily added whenever necessary.

 Follows bottom up approach in program design.

Basic Concepts in Object Oriented Programming:

 Objects

 Classes

 Data Abstraction and Encapsulation

 Inheritance

 Polymorphism

 Dynamic Binding

 Message passing

Benefits of Object Oriented Programming:

 Through inheritance, we can eliminate redundant code and extend the use of existing classes.

 The principle of data hiding helps the programmer to build secure programs that cannot be

invaded by code in other parts of the program.

OOP Lab Manual

AGTI’s, DACOE Karad Page 9

 It is possible to have multiple instances of an object to co-exist without any interference.

 It is possible to map objects in the problem domain to those objects in the program.

 It is easy to partition the work in a project based on objects.

 The data centered design approach enables us to capture more details of a model in

implementable form.

 Object-oriented systems can be easily upgraded from small to large systems.

 Message passing techniques for communication between objects makes the interface

descriptions with external systems much simpler.

 Software complexity can be easily managed.

C++ is an object oriented language. Three most important facilities that C++ adds on to C

are classes, function overloading, and operator overloading. These features enable us to create

abstract data type, inherit properties from existing data types & support polymorphism, thus making

C++ a truly object oriented language. C++ is a versatile language for handling very large programs.

It is suitable for virtually any programming task including development of editors, compilers,

databases, communication systems and any complex real life application systems.

Output Operator:

Output statement introduces two new C++ features, cout and <<. The identifier cout is a

predefined object that represents the Standard Output Stream(i.e. Screen) in C++. The operator <<

is called the insertion or put to operator. It inserts the contents of the variable on its right to the

objects on its left.

e.g. cout<<” Two numbers are”<<a<<b;

Input Operator:

The input statement causes the program to wait for the user to type in a number. The number

keyed in is placed in the variable. The identifier cin is predefined object in C++ corresponds to

Standard Input Stream(i.e Keyboard). The operator >> is known as extraction or get from operator.

It extracts the value from keyboard and assigns it to variable at right.

e.g cin>>number;

The iostream File:

#include<iostream>

This directive causes the preprocessor to add contents of the iostream file to the program. It

contains declarations for the identifier cout and operator <<.

PROGRAM -

//program to implement arithmetic operation using c language.

#include<stdio.h>

OOP Lab Manual

AGTI’s, DACOE Karad Page 10

#include<conio.h>

void main()

{ int a,b,c,opt;

clrscr();

printf("\n Enter Two Number for arithmetic operation\t\n");

scanf("%d%d",&a,&b);

while(1)

{ clrscr();

printf("\n\t Number1 : %d",a);

printf("\n\t Number2: %d",b);

printf("\n\t 1.Addition \n\t 2.Substraction \n\t 3.Multiplication ");

printf("\n\t 4.Division \n\t 5.exit \nOption: ");

scanf("%d",&opt);

if(opt>=5)

break;

switch(opt)

{ case 1:

c=a+b;

printf("\n\t Addition is : %d",c);

break;

case 2:

case 3:

c=a-b;

printf("\n\subtraction is : %d",c);

break;

c=a*b;

OOP Lab Manual

AGTI’s, DACOE Karad Page 11

}}

OUTPUT

case 4:

}getch();

printf("\n\t Multiplication is : %d",c);

break;

c=a/b;

printf("\n\t Division is : %d",c);

break;

Enter Two Number for arithmetic operation

20

10

Number1 :20

Number2 :10

1.Addition

2.Substraction

3.Multiplication

4.Division

5.exit

option:1

Addition is: 30

1.Addition

2.Substraction

3.Multiplication

4.Division

5.exit

OOP Lab Manual

AGTI’s, DACOE Karad Page 12

option:2

subtraction is : 10

1. Addition

2.Substraction

3.Multiplication

4.Division

5.exit

option:3

Multiplication is :200

1.Addition

2. Substraction

3.Multiplication

4.Division

5.exit

option:4

Division is :2

1.Addition

2.Substraction

3.Multiplication

4.Division

5.exit

option:5

//program to implement arithmetic operation using c++ language.

#include<iostream.h>

#include<conio.h>

OOP Lab Manual

AGTI’s, DACOE Karad Page 13

void main()

{ int a,b,c,opt;

clrscr();

cout<<"\n Enter Two Number for arithmetic operation\t"<<endl;

cin>>a>>b;

cout<<endl;

while(1)

{

clrscr();

cout<<endl;

cout<<" Number 1:"<<a<<endl;

cout<<" Number 2:"<<b<<endl;

cout<<"\t 1.Addition \n\t 2.Substraction \n\t 3.Multiplication ";

cout<<"\n\t 4.Division \n\t 5.exit \nOption: ";

cin>>opt;

cout<<endl;

if(opt>=5)

break;

switch(opt)

{ case 1:

c=a+b;

cout<<"Addition is : "<<c<<endl;

break;

case 2:

c=a-b;

cout<<"Subtraction is : "<<c<<endl;

OOP Lab Manual

AGTI’s, DACOE Karad Page 14

case 3:

case 4:

break;

c=a*b;

cout<<"Multiplication is : "<<c<<endl;

break;

c=a/b;

cout<<"division is : "<<c<<endl;

break;

}}

OUTPUT:-

} getch();

Enter Two Number for arithmetic operation

8

4

Number1 :8

Number2 :4

1.Addition

2.Substraction

3.Multiplication

4.Division

5.exit

option:1

Addition is: 12

1.Addition

2.Substraction

OOP Lab Manual

AGTI’s, DACOE Karad Page 15

3.Multiplication

4.Division

5.exit

option:2

Subtraction is : 4

1.Addition

2.Substraction

3.Multiplication

4.Division

5.exit

option:3

Multiplication is :32

1.Addition

2.Substraction

3.Multiplication

4.Division

5.exit

option:5

Conclusion: Thus, we have studied comparison of procedure oriented programming & Object

oriented programming features with an example.

OOP Lab Manual

AGTI’s, DACOE Karad Page 16

Experiment No 2

Title: - Introduction of object oriented programming and structure of C++ program

Aim: -To study Basic concepts of OOPS and Structure of C++ program

Theory:

In this experiment we will learn about Objects, Classes, Inheritance, Data Abstraction, Data

Encapsulation, Polymorphism, Overloading and Reusability. Before starting to learn C++ it is

essential that one must have a basic knowledge of the concepts of Object oriented programming.

Some of the important object oriented features are namely:

 Objects

 Classes

 Inheritance

 Data Abstraction

 Data Encapsulation

 Polymorphism

 Overloading

 Reusability

In order to understand the basic concepts in C++, the programmer must have a command of

the basic terminology in object-oriented programming. Below is a brief outline of the concepts of

Object-oriented programming languages:

Objects:

Object is the basic unit of object-oriented programming. Objects are identified by its unique

name. An object represents a particular instance of a class. There can be more than one instance of

an object. Each instance of an object can hold its own relevant data. An Object is a collection of data

members and associated member functions also known as methods.

Classes:

Classes are data types based on which objects are created. Objects with similar properties

and methods are grouped together to form a Class. Thus a Class represents a set of individual

objects. Characteristics of an object are represented in a class as Properties. The actions that can be

performed by objects become functions of the class and are referred to as Methods.

For example consider we have a Class of Cars under which Santro Xing, Alto and WaganR

represents individual Objects. In this context each Car Object will have its own, Model, Year of

Manufacture, Color, Top Speed, Engine Power etc., which form Properties of the Car class and the

associated actions i.e., object functions like Start, Move, and Stop form the Methods of Car Class.

No memory is allocated when a class is created. Memory is allocated only when an object is created,

i.e., when an instance of a class is created.

OOP Lab Manual

AGTI’s, DACOE Karad Page 17

Inheritance:

Inheritance is the process of forming a new class from an existing class or base class. The

base class is also known as parent class or super class, the new class that is formed is called derived

class. Derived class is also known as a child class or sub class. Inheritance helps in reducing the

overall code size of the program, which is an important concept in object-oriented programming.

Data Abstraction:

Data Abstraction increases the power of programming language by creating user defined

data types. Data Abstraction also represents the needed information in the program without

presenting the details.

Data Encapsulation:

Data Encapsulation combines data and functions into a single unit called class. When using

Data Encapsulation, data is not accessed directly; it is only accessible through the functions present

inside the class. Data Encapsulation enables the important concept of data hiding possible.

Polymorphism:

Polymorphism allows routines to use variables of different types at different times. An

operator or function can be given different meanings or functions. Polymorphism refers to a single

function or multi-functioning operator performing in different ways.

Overloading:

Overloading is one type of Polymorphism. It allows an object to have different meanings,

depending on its context. When an existing operator or function begins to operate on new data type,

or class, it is understood to be overloaded.

Reusability:

This term refers to the ability for multiple programmers to use the same written and

debugged existing class of data. This is a time saving device and adds code efficiency to the

language. Additionally, the programmer can incorporate new features to the existing class, further

developing the application and allowing users to achieve increased performance. This time saving

feature optimizes code, helps in gaining secured applications and facilitates easier maintenance on

the application.

OOP Lab Manual

AGTI’s, DACOE Karad Page 18

A sample program to understand the basic structure of C++

Include Header Files

Class Declaration

Member Function Definition

Main Function Program

//Program to read employee details and to output the data

#include <iostream> //Preprocessor directive

using namespace std;

class employee // Class Declaration

{

private:

char empname[50];

int empno;

public:

void getvalue()

{

cout<<"INPUT Employee Name:";

cin>>empname;

cout<<"INPUT Employee Number:";

cin>>empno;

}

void displayvalue()

{

cout<<"Employee Name:"<<empname<<endl;

cout<<"Employee Number:"<<empno<<endl;

}

OOP Lab Manual

AGTI’s, DACOE Karad Page 19

};

main()

{ employee e1; // Creation of Object

e1.getvalue();

e1.displayvalue();

}

Overview of the Basic Structure of C++ Programming

 The // in first line is used for representing comment in the program.

 The second line of the program has a # symbol which represents the preprocessor directive

followed by header file to be included placed between < >.

 The next structure present in the program is the class definition. This starts with the keyword

class followed by class name employee. Within the class are data and functions. The data

defined in the class are generally private and functions are public. These explanations we

will be detailed in later sections. The class declaration ends with a semicolon.

 main() function is present in all C++ programs.
 An object e1 is created in employee class. Using this e1 the functions present in the

employee class are accessed and there by data are accessed.

 The input namely ename and eno is using the input statement namely cin and the values are

outputted using the output statement namely cout.

PROGRAM –

Class, Object, Control Structures:

#include<iostream.h>

#include<conio.h>

class operation

{ private:

int addi,subs,multi;

float a,b,divi;

public:

void getdata();

void add();

void sub();

void mult();

OOP Lab Manual

AGTI’s, DACOE Karad Page 20

void div();

}x;

void operation::getdata()

{ cout<<"Enter the value for a,b";

cin>>a>>b;

}

void operation::add()

{ getdata();

addi=a+b;

cout<<"Adddition of two numbers"<<addi;

}

void operation::sub()

{ getdata();

subs=a-b;

cout<<"Substraction of two numbers"<<subs;

}

void operation::div()

{ getdata();

divi=a/b;

cout<<"Division of two numbers"<<divi;

}

void operation::mult()

{ getdata();

multi=a*b;

cout<<"Multiplication of two numbers"<<multi;

}

OOP Lab Manual

AGTI’s, DACOE Karad Page 21

void main()

{ int choice;

char ch;

clrscr();

do

{

cout<<"1.Addition\n2.Substraction\n3.Division\n4.Multiplication";

cout<<"Enter u r choice";

cin>>choice;

switch(choice)

{

case 1:

case 2:

case 3:

case 4:

}

x.add();

break;

x.sub();

break;

x.div();

break;

x. mult();

break;

cout<<"\nDo you want to continue";

cin>>ch;

OOP Lab Manual

AGTI’s, DACOE Karad Page 22

}

OUTPUT:

1. Addition

2. Subtraction

3. Division

}while(ch=='y');

getch();

4. Multiplication

Enter u r choice 1

Enter values for a &b 10 20

Addition of two numbers 30

Do you want to continue Y

1. Addition

2. Subtraction

3. Division

4. Multiplication

Enter u r choice 2

Enter values for a & b 20 5

Subtraction of two numbers 15

Do you want to continue N

Conclusion: Thus, we have studied basic concept of object oriented programming concepts and

structure of C++ program.

OOP Lab Manual

AGTI’s, DACOE Karad Page 23

Experiment No: 3

Title: - Implementation of Constructor & Destructor.

Aim: - To study the concept of Constructor & Destructor and implement program for Constructor &

Destructor.

Theory:-

Constructor

A constructor is special member function whose task is to initialize object. The objects of its

class are special because its name same as the class name. The constructor is involved whenever as

object of it associated class it is called constructor because it construct the value of data members of

class.

When class contain constructor like the one define above it is guaranteed that an object created by

the class will be initialized automatically.

e.g. integer nt i

Not only used the objects int i of type integer but also initialize its data members and to zero.

There is no need to write any statement to invoke this function for object separately.

The constructor functions have some special characters.

1. They should be declared in the public section.

2. They are invoked automatically when the subject are created.

3. They do not have return types not even void and therefore they cannot return a value.

4. They cannot be inherited through a defined class can call base class constructor.

5. Like other C++ function they can have default arguments.

6. Constructors cannot be virtual.

7. We cannot refer to their address

8. An object with a constructor cannot be used as a member of union.

9. They make implicit calls to the operators new and delete when memory allocation is required.

Destructors: Destructor is a function that automatically executed when an object is destroyed. A

destructor function gets executed whenever an instance of the class to which it belongs goes out of

existence. The primary usage of the destructor function is t release space on the heap. A destructor

function may be involved explicitly.

OOP Lab Manual

AGTI’s, DACOE Karad Page 24

Syntax rules for writing a destructor function. The rules for writing a destructor function are:

1. A destructor function name is the same as that of the class.

2. It is declared with no return types. Since it cannot ever return a value.

3 .It cannot be declared static constructor variable.

4. It takes no argument and therefore cannot be over loaded.

5. It should have public access in the class declaration.

6. The general syntax of the destructor function in C++ is,

Class user _ name

{ private:

public:

};

\\ data variable

\\ methods

protected:

\\data

user_name (); \\ constructor

~user_name (); \\ destructor

\\ methods

Program

Constructor & Destructor:

#include<iostream.h>

#include<conio.h>

class account

{

OOP Lab Manual

AGTI’s, DACOE Karad Page 25

private:

float bal,intr,amt,acc;

float rate,dep,mon;

char nm[10];

public:

account();

~account();

void getbal();

void deposit();

void compound();

void menu();

void withdraw();

void display();

};

account::account()

{ cout<<"\nEnter the account number:";

cin>>acc;

cout<<"\nEnter the name of the customer:";

cin>>nm;

rate=0.02;

intr=0;

amt=0;

dep=0;

cout<<"\nEnter u r balance";

cin>>bal;

}

OOP Lab Manual

AGTI’s, DACOE Karad Page 26

account::~account()

{ cout<<"\nThanks";

cout<<"\nMeet Again";

getch();

}

void account::deposit(void)

{ cout<<"\nEnter the deposit:";

cin>>dep;

bal=bal+dep;

cout<<"\nThe total balance="<<bal;

}

void account::getbal(void)

{ cout<<"\nBalance is:"<<bal;

}

void account::compound(void)

{ cout<<"\nHow many Months:";

cin>>mon;

intr=bal*rate*mon;

bal=bal+intr;

cout<<"\nThe total balance"<<bal;

}

void account::withdraw()

{ cout<<"\nEnter the amount for withdraw=";

cin>>amt;

if(amt<bal)

OOP Lab Manual

AGTI’s, DACOE Karad Page 27

{ bal=bal-amt;

cout<<"\nTotal balnce is="<<bal;

} else

{ cout<<"\n\nSORRY You Can NOt \withdraw";

}

}

void account::menu()

{ cout<<"1.Deposit\n2.Withdraw\n3.Compound\n4.Balance\n5.Display";

}

void account::display()

{ cout<<"Acc.no.\tName\tDiposit\tWithdraw\tInterest\tBalance\n";

cout<<acc<<"\t"<<nm<<"\t"<<dep<<"\t"<<amt<<"\t"<<intr<<"\t"<<bal;

}

void main()

{ clrscr();

account ac;

int ch;

char choice;

do

{ ac.menu();

cout<<"\nEnter u r choice";

cin>>ch;

switch(ch)

{ case 1:

ac.deposit();

break;

OOP Lab Manual

AGTI’s, DACOE Karad Page 28

case 2:

case 3:

case 4:

case 5:

ac.withdraw();

break;

ac.compound();

break;

ac.getbal();

break;

ac.display();

break;

default:

cout<<"Sorry u r entered wrong choice";

}

cout<<"\nDo U Want To Continue";

cin>>choice;

} while(choice=='y' || choice=='Y');

getch();

}

OUTPUT:

Enter the account number: 09

Enter the name of the customer: Ram

Enter u r balance 10000

1. Deposit

OOP Lab Manual

AGTI’s, DACOE Karad Page 29

2. Withdraw

3. Compound

4. Balance

5. Display

Enter u r choice 1

Enter the deposit: 10000

The total balance =20000

Do u want to continue Y

1. Deposit

2. Withdraw

3. Compound

4. Balance

5. Display

Enter u r choice 2

Enter amount for withdraw= 5000

The total balance =15000

Do u want to continue N

Thanks

Meet Again

Conclusion: Thus, we have studied concept of Constructor & Destructor and implement a program.

OOP Lab Manual

AGTI’s, DACOE Karad Page 30

Experiment No: 4

Title: - Implementation of Function overloading and Constructor overloading,

Aim: - To study & implement the concept of Function overloading and Constructor overloading,

Theory:-

Overloading Functions:

Function overloading is the ability to have multiple definitions for the same function name

within the same scope. The usual reason for picking a function name is to indicate the function‟s

chief purpose. Readable programs generally have a diverse and literate choice of identifiers.

Sometimes different functions are used for the same purpose. For example, consider a function that

averages a sequence of double values versus one that averages a sequence of int values. Both are

conveniently named average (), as in the following code. An overloaded function can be written in

which there are distinct argument lists. The list of arguments must differ in either type or number or

both. The compiler chooses the function with matching types and arguments. The signature

matching algorithm gives the rules for performing this. By signature, we mean the list of types that

are used in the function declaration. The rules for this match are very detailed. We discuss them in

more detail in Section 5.9, Overloading and Signature Matching, on page 208. Conceptually, the

algorithm picks the best available match.

Therefore, if the arguments are exactly matched to the signature, that is the match selected. In the

preceding code, the arguments exactly matched the two versions of the overloaded function

average(). It is important not to abuse this feature. Multiple functions with the same name can

often be confusing. It is not readily apparent to the programmer which version is being called. The

use of function overloading is good design when each version of the overloaded function

conceptually performs the same computation.

Polymorphism Using Function Overloading:

Polymorphism is a means of giving different meanings to the same function name or

operator, dependent on context. The appropriate meaning is selected on the basis of the type of data

being processed. We have encountered one form of polymorphism when writing expressions of

mixed type. Depending on the type of the operands, the division operator on native types might be

either an integer division or a floating-point division. Object orientation takes advantage of

polymorphism by linking behavior to the object‟s type. Operators, such as + and <<, have distinct

meanings overloaded by operand type. For example, the expression cout << x is by convention

expected to display an appropriate representation of x, depending on the type of object x.

Overloading of functions gives the same function name different meanings. The name has several

interpretations that depend on function selection. This is called ad hoc polymorphism. Operators are

overloaded and selected based on the signature-matching algorithm. Overloading operators gives

them new meanings. For example, the meaning of the expression a + b differs depending on the

types of the variables a and b. Overloading the operator + for user-defined types allows them to be

OOP Lab Manual

AGTI’s, DACOE Karad Page 31

used in addition expressions in much the same way native types are used. The expression a + b

could mean string concatenation, complex-number addition, or integer addition, depending on

whether the variables were the user-defined ADT my string, the standard library class complex, or

the native type int. Mixed-type expressions are also made possible by defining conversion functions.

One principle of OOP is that user-defined types must enjoy the same privileges as native types.

Where the C++ standard library adds the complex number type, the programmer expects the

convenience of using it without regard to a native/nonnative distinction. Operator overloading and

user-defined conversions let us use complex numbers in much the same way as we can use int or

double. Later, we will discuss two other powerful forms of polymorphism, namely, parametric

polymorphism using templates and pure polymorphism using virtual functions.

Overloaded Constructors:

It‟s convenient to be able to give variables of type Distance a value when they are first

created. That is, we would like to use definitions like

Distance width(5, 6.25);

Which defines an object, width simultaneously initializes it to a value of 5 for feet and 6.25 for

inches. To do this we write a constructor like this:

Distance (int ft, float in) : feet(ft), inches(in)

{ }

This sets the member data feet and inches to whatever values are passed as arguments to the

constructor. So far so good. However, we also want to define variables of type Distance without

initializing them,

Distance dist1, dist2;

In that program there was no constructor, but our definitions worked just fine. How could

they work without a constructor? Because an implicit no–argument constructor is built into the

program automatically by the compiler and it‟s this constructor that created the objects, even though

we didn‟t define it in the class. This no–argument constructor is called the default constructor. If it

weren‟t created automatically by the constructor, you wouldn‟t be able to create objects of a class

for which no constructor was defined.

Often we want to initialize data members in the default (no–argument) constructor as well. If

we let the default constructor do it, we don‟t really know what values the data members may be

given. If we care what values they may be given, we need to explicitly define the constructor. We

show how this looks:

Distance (): feet (0), inches (0.0) //default constructor

{ } //no function body, doesn‟t do anything

The data members are initialized to constant values, in this case the integer value 0 and the

float value 0.0, for feet and inches respectively. Now we can use objects initialized with the no–

argument constructor and be confident they represent no distance (0 feet plus 0.0 inches) rather than

some arbitrary value.

OOP Lab Manual

AGTI’s, DACOE Karad Page 32

Since there are now two explicit constructors with the same name, Distance (), we say the

constructor is overloaded. Which of the two constructors is executed when an object is created

depends on how many arguments are used in the definition:

Distance length; // calls first constructor

Distance width (11, 6.0); // calls second constructor

Programs:-

a) Function Overloading:-

#include<iostream>

using namespace std;

class geometry

{ private:

float l,b,h,dia,s,v,x,in,rn,ht;

public:

void area(float l,float b,float h)

{ s=2*l*b*b*h*h*l;

cout<<"Area of cuboid is:"<<s<<"sq.unit";

}

void area(float x)

{

s=6*x*x;

cout<<"\nsurface area of cube:"<<s<<"sq.unit";

}

void area(float rn, float ht)

{ float pi=3.142;

s=2*pi*rn*(ht+rn);

cout<<"\nSurface area of cylinder is:"<<s<<"sq.unit";

OOP Lab Manual

AGTI’s, DACOE Karad Page 33

}

void vol(float l,float b,float h)

{ v=l*b*h;

cout<<"\n\nvolume of cubid is:"<<v<<"cb.unit";

}

void vol(float x)

{ v=x*x*x;

cout<<"\n\nvolume area of cube:"<<v<<"sq.unit";

}

void vol(float rn, float ht)

{ float pi=3.142;

v=pi*rn*ht*rn;

cout<<"\n\nvolume of cylinder is:"<<v<<"sq.unit";

}

};

int main()

{ geometry g;

int ch,i=10;

while(1)

{ cout<<"\n\n\nFIND VOLUME&SURFACE AREA OF SHAPES.";

cout<<"\n1.CUBOID\n2.CUBE\n3.CYLINDER\n4.EXIT.";

cout<<"\nCHOICE::";

cin>>ch;

if(ch==4)

break;

switch(ch)

OOP Lab Manual

AGTI’s, DACOE Karad Page 34

{ case 1:

case 2:

case 3:

default:

int l,b,h;

cout<<"\nenter l,b & h of cuboid";

cin>>l>>b>>h;

g.area(l,b,h);

g.vol(l,b,h);

break;

int s;

cout<<"\nenter side of cube";

cin>>s;

g.area(s);

g.vol(s);

cout<<"\nDiagonal of cube:"<<1.73*i<<"unit";

break;

int rn,ht;

cout<<"\nenter rn&ht of cylinder";

cin>>rn>>ht;

g.area(rn,ht);

g.vol(rn,ht);

break;

cout<<"\nWrong choice";

}

} return 0; }

OOP Lab Manual

AGTI’s, DACOE Karad Page 35

OUTPUT:

FIND VOLUME&SURFACE AREA GEOMETRIC SHAPES.

1 .CUBOID

2. CUBE

3. CYLINDER

4. EXIT.

CHOICE::2

Enter side of cube4

Surface area of cube: 96sq.unit

Volume area of cube: 64sq.unit

Diagonal of cube: 17.3unit.

FIND VOLUME&SURFACE AREA GEOMETRIC SHAPES.

1. CUBOID

2. CUBE

3. CYLINDER

4. EXIT.

CHOICE::1

Enter l,b & h of cuboid4

5

6

Area of cuboid is: 28800sq.unit

Volume of cubid is: 120cb.unit

FIND VOLUME&SURFACE AREA GEOMETRIC SHAPES.

1. CUBOID

2. CUBE

3. CYLINDER

OOP Lab Manual

AGTI’s, DACOE Karad Page 36

4. EXIT.

CHOICE::3

Enter rn & ht of cylinder3

5

Surface area of cylinder is: 150.815994sq.unit

Volume of cylinder is: 141.389999sq.unit

FIND VOLUME&SURFACE AREA GEOMETRIC SHAPES.

1. CUBOID

2. CUBE

3. CYLINDER

4. EXIT.

CHOICE::4

b) Constructor Overloading:

#include<iostream>

Using namespace std;

int ch;

class constr

{ public:

int a,b,c;

constr(int,int);

constr(float,float);

constr(int,int,int);

void putdata();

void putdata1();

};

OOP Lab Manual

AGTI’s, DACOE Karad Page 37

constr::constr(int x,int y)

{ if(ch==1)

{ int c;

c=x+y;

cout<<"\n\tADDITION="<<c;

}

if(ch==2)

{ int c;

c=x-y;

cout<<"\n\tSUBSTRACTION="<<c;

}

}

constr::constr(float x,float y)

{ if(ch==1)

{ float c;

c=x+y;

cout<<"\n\tADDITION="<<c;

} if(ch==2)

{ float c;

c=x-y;

cout<<"\n\tSUBSTRACTION="<<c;

}

} constr::constr(int a,int b,int c)

{ int d;

d=a*b*c;

cout<<"\n\tMULTIPLICATION="<<d; }

OOP Lab Manual

AGTI’s, DACOE Karad Page 38

int main()

{ static int x,y,z;

static float p,q;

while(1)

{ cout<<"\n\t1.ADDITION\n\t2.SUBSTRACTION\n\t3.MULTIPLICATION\n\t4.EXIT";

cout<<"\n\tENTER YOUR CHOICE\t";

cin>>ch;

switch(ch)

{ case 1:

cout<<"\n\tENTER TWO INTEGER NUMBERS\t";

cin>>x>>y;

constr c1(x,y);

cout<<"\n\tENTER TWO FLOAT NUMBERS\t";

cin>>p>>q;

constr c2(p,q);

break;

case 2:

case 3:

cout<<"\n\tENTER TWO INTEGER NUMBERS\t";

cin>>x>>y;

constr c3(x,y);

cout<<"\n\tENTER TWO FLOAT NUMBERS\t";

cin>>p>>q;

constr c4(p,q);

break;

cout<<"\n\tENTER THREE INTEGER NUMBERS\t";

OOP Lab Manual

AGTI’s, DACOE Karad Page 39

case 4:

cin>>x>>y>>z;

constr c5(x,y,z);

break;

return(0);

break;

default:

} return 0;

}

cout<<"\n\tWRONG CHOICE";

OUTPUT:

1. ADDITION

2. SUBSTRACTION

3. MULTIPLICATION

4. EXIT

ENTER YOUR CHOICE

1

ENTER TWO INTEGER NUMBERS

1

1

ADDITION=2

ENTER TWO FLOAT NUMBERS

1.2

2.2

ADDITION=3.4

1. ADDITION

OOP Lab Manual

AGTI’s, DACOE Karad Page 40

2. SUBSTRACTION

3. MULTIPLICATION

4. EXIT

ENTER YOUR CHOICE

3

ENTER THREE INTEGER NUMBERS

2

5

1

MULTIPLICATION=10

1. ADDITION

2. SUBSTRACTION

3. MULTIPLICATION

4. EXIT

ENTER YOUR CHOICE 4

Conclusion: - Thus we implemented the concept of Function overloading, Constructor overloading,

Operator overloading.

OOP Lab Manual

AGTI’s, DACOE Karad Page 41

Experiment No: 5

Title: - Implementation of Operator overloading.

Aim: - To study & implement the concept of Operator overloading.

Theory:- Overloading Operators

The keyword operator is used to define a type-conversion member function, as well as

to overload the built-in C++ operators. Just as a function name such as print() can be given a variety

of meanings depending on its arguments, so can an operator such as + be given additional meanings.

Overloading operators allows infix expressions of both ADTs and built-in types to be written. In

many instances, this important notational convenience leads to shorter, more readable programs.

Unary and binary operators can be overloaded as non static member functions. Implicitly,

they are acting on a class value. Most unary operators can be overloaded as ordinary functions,

taking a single argument of class or reference-to-class type. Most binary operators can be

overloaded as ordinary functions, taking one or both arguments of class or reference-to-class type.

The operators =, (), [], and -> must be overloaded with a non static member function.

Although meanings can be added to operators, their associativity and precedence remain the

same. For example, the multiplication operator remains of higher precedence than the addition

operator. Almost all operators can be overloaded. The exceptions are the member operator. the

member object selector .*, the ternary conditional expression operator ? : , the sizeof operator, and

the scope resolution operator :: .

Available operators include all of the arithmetic, logical, comparison, equality, assignment,

and bit operators. Furthermore, the increment and decrement operators, ++ and --, a have distinct

prefix and postfix meanings. The subscript or index operator [] and the function call () can also be

overloaded. The structure pointer operator -> and the member pointer selector operator ->* can be

overloaded. It is also possible to overload new and delete. The assignment, function call,

subscripting, and class pointer operators can be overloaded only by non static member functions.

PROGRAM:- //Programe to overload „+‟ and „>‟ operator

#include<iostream>

using namespace std;

class number

{ int a;

public:

number()

{
a=0;

}

number(int x)

OOP Lab Manual

AGTI’s, DACOE Karad Page 42

{ a=x;

}

number operator +(number &n1);

int operator >(number & n);

void display();

};

number number::operator +(number &n1)

{ number n;

n.a=a+n1.a;

return n;

}

int number::operator >(number &n)

{ return(a>n.a);

}

void number::display()

{ cout<<a<<"\n";

}

void main()

{ int a,b,c;

cout<<"\n\tPROGRAM FOR OPERATOR OVERLOADING\n";

cout<<"\n\tENTER THREE FOR A,B,C\t";

cin>>a;

cout<<"\n\t\t\t\t";

cin>>b;

cout<<"\n\t\t\t\t";

cin>>c;

number n(a),n1(b),n2(c);

number n3,n4;

n3=n+n1;

cout<<"\n\tX=A+B=\t";

n3.display();

n4=n+n2;

cout<<"\n\tY=A+C=\t";
n4.display();

if(n3>n4)

cout<<"\n\tX IS GREATER ";

else

cout<<"\n\tY IS GREATER";

}

OUTPUT

ENTER THREE FOR A,B,C 10

20

30

X=A+B= 30

Y=A+C= 40

Y IS GREATER

Conclusion: - Thus we have implemented the concept of Operator overloading.

OOP Lab Manual

AGTI’s, DACOE Karad Page 43

Experiment No 6

Title: - Implementation Multilevel inheritance

Aim: - To study & implement the concept of Multilevel inheritance.

Theory:-

What is Inheritance:-

Inheritance is the process by which new classes called derived classes are created from

existing classes called base classes. The derived classes have all the features of the base class and

the programmer can choose to add new features specific to the newly created derived class.

For example: a programmer can create a base class named fruit and define derived classes as

mango, orange, banana, etc. Each of these derived classes, (mango, orange, banana, etc.) has all the

features of the base class (fruit) with additional attributes or features specific to these newly created

derived classes. Mango would have its own defined features, orange would have its own defined

features, banana would have its own defined features, etc. This concept of Inheritance leads to the

concept of polymorphism.

Features or Advantages of Inheritance:

Reusability:

Inheritance helps the code to be reused in many situations. The base class is defined and

once it is compiled, it need not be reworked. Using the concept of inheritance, the programmer can

create as many derived classes from the base class as needed while adding specific features to each

derived class as needed.

Saves Time and Effort:

The above concept of reusability achieved by inheritance saves the programmer time and

effort. Since the main code written can be reused in various situations as needed.

Overriding--With inheritance, we will be able to override the methods of the base class so that

meaningful implementation of the base class method can be designed in the derived class.

Data hiding -- Base class can decide to keep some data private so that it cannot be altered by the

derived class

Inheritance can also make application code more flexible to change because classes that inherit from

a common superclass can be used interchangeably. If the return type of a method is superclass

OOP Lab Manual

AGTI’s, DACOE Karad Page 44

Types/Forms of Inheritance

There are 05 forms of Inheritance as shown in figure

01. Single Inheritance: It is the inheritance hierarchy wherein one derived class inherits from

one base class.

02. Multiple Inheritance: It is the inheritance hierarchy wherein one derived class inherits from

multiple base class(es)

03. Hierarchical Inheritance: It is the inheritance hierarchy wherein multiple subclasses inherit

from one base class.

04. Multilevel Inheritance: It is the inheritance hierarchy wherein subclass acts as a base class

for other classes.

05. Hybrid Inheritance: The inheritance hierarchy that reflects any legal combination of other

four types of inheritance.

OOP Lab Manual

AGTI’s, DACOE Karad Page 45

Simple / Single Inheritance:-

The transitive nature of inheritance is reflected by this form of inheritance. When a class is

derived from a class which is a derived class itself – then this is referred to as multilevel inheritance.

For example

ClassA, ClassB and ClassC.

ClassB is derived from ClassA and ClassC is derived ClassB This is multi level inheritance..

ClassA

^

|

ClassB

^

|

ClassC

PROGRAM:-

Simple Inheritance :-

#include <iostream.h>

class base {

int i, j;

public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {

int k;

public:

derived(int x) { k=x; }

void showk() { cout << k << "\n"; }

};

int main()

{

OOP Lab Manual

AGTI’s, DACOE Karad Page 46

derived ob(3);

ob.set(1, 2); // access member of base

ob.show(); // access member of base

ob.showk(); // uses member of derived class

return 0;

}

OUTPUT

1

2

3

a) Multilevel Inheritance :-

#include<iostream>

using namespace std;

int ch;

class ONE

{ protected:

public:

int cc1,cc2,milage1,milage2;

char type1[20],type2[20];

void getdata()

{ cout<<"\n\tENTER CC\t";

cin>>cc1;

cout<<"\n\tENTER MILAGE\t";

cin>>milage1;

}

void getdata1()

{ cout<<"\n\tENTER CC\t";

OOP Lab Manual

AGTI’s, DACOE Karad Page 47

cin>>cc2;

cout<<"\n\tENTER MILAGE\t";

cin>>milage2;

}

};

class TWO:public ONE

{ protected:

public:

int seat1,seat2,model1,model2;

void getdata2()

{ ONE::getdata();

cout<<"\n\tENTER NUMBER OF SEATS\t";

cin>>seat1;

cout<<"\n\tENTER MODEL\t";

cin>>model1;

}

void getdata3()

{ ONE::getdata1();

cout<<"\n\tENTER NUMBER OF SEATS\t";

cin>>seat2;

cout<<"\n\tENTER MODEL\t";

cin>>model2;

}

};

class THREE:public TWO

{

OOP Lab Manual

AGTI’s, DACOE Karad Page 48

}obj;

public: void getdata4()

{ TWO::getdata2();

}

void getdata5()

{ TWO::getdata3();

}

void display();

void compare();

void THREE::display()

{ int j;

cout<<"\n";

for(j=0;j<=50;j++)

cout<<"_";

cout<<"\n\tINFORMATION OF FIRST VEHICLE";.

cout<<"\n";

for(j=0;j<=50;j++)

cout<<"_";

cout<<"\n\tTYPE=\t"<<obj.type1;

cout<<"\n\tMILAGE=\t"<<obj.milage1;

cout<<"\n\tCC=\t"<<obj.cc1;

cout<<"\n\tNo OF SEATS="<<obj.seat1;

cout<<"\n\tMODEL=\t"<<obj.model1;

cout<<"\n";

for(j=0;j<=50;j++)

cout<<"_";

OOP Lab Manual

AGTI’s, DACOE Karad Page 49

cout<<"\n\tINFORMATION OF SECOND VEHICLE";

cout<<"\n";

for(j=0;j<=50;j++)

cout<<"_";

cout<<"\n\tTYPE=\t"<<obj.type2;

cout<<"\n\tMILAGE=\t"<<obj.milage2;

cout<<"\n\tCC=\t"<<obj.cc2;

cout<<"\n\tNo OF SEATS="<<obj.seat2;

cout<<"\n\tMODEL=\t"<<obj.model2;

cout<<"\n";

for(j=0;j<=50;j++)

cout<<"_";

}void THREE::compare()

{ int j;

if(ch==1)

{ if((obj.milage1>obj.milage2))

{ cout<<"\n\tFIRST VEHICLE IS BETTER THAN SECOND

VEHICLE";

}

else

{ cout<<"\n\tSECOND VEHICLE IS BETTER THAN FIRST

VEHICLE";

}

cout<<"\n";

for(j=0;j<=50;j++)

cout<<"_";

}

OOP Lab Manual

AGTI’s, DACOE Karad Page 50

if(ch==2)

{ if((obj.cc1>obj.cc2))

{ cout<<"\n\tFIRST VEHICLE IS BETTER THAN SECOND

VEHICLE";

}

else

{ cout<<"\n\tSECOND VEHICLE IS BETTER THAN FIRST

VEHICLE";

}

cout<<"\n";

for(j=0;j<=50;j++)

cout<<"_";

}

}

int main()

{ cout<<"\n\tPROGRAM FOR MULTILEVEL INHERITANCE\n";

while(1)

{ cout<<"\n\t1.TWO WHEELER\n\t2.FOUR WHEELER\n\t3.EXIT";

cout<<"\n\tENTER YOUR CHOICE\n\t";

cin>>ch;

switch(ch)

{ case 1:

cout<<"\n\tFOR FIRST VEHICLE\n";

obj.THREE::getdata4();

cout<<"\n\n\tFOR SECOND VEHICLE\n";

obj.THREE::getdata5();

strcpy(obj.type1,"TWO WHEELER");

OOP Lab Manual

AGTI’s, DACOE Karad Page 51

case 2:

case 3:

strcpy(obj.type2,"TWO WHEELER");

obj.display();

obj.compare();

break;

cout<<"\n\tFOR FIRST VEHICLE\n";

obj.THREE::getdata4();

cout<<"\n\n\tFOR SECOND VEHICLE\n";

obj.THREE::getdata5();

strcpy(obj.type1,"FOUR WHEELER");

strcpy(obj.type2,"FOUR WHEELER");

obj.display();

obj.compare();

break;

return (0);

break;

default:

cout<<"\n\tWRONG CHOICE";

}OUTPUT

}

}

PROGRAM FOR MULTILEVEL INHERITANCE

1. TWO WHEELER

2. FOUR WHEELER

3. EXIT

OOP Lab Manual

AGTI’s, DACOE Karad Page 52

ENTER YOUR CHOICE

1

FOR FIRST VEHICLE

ENTER CC 135

ENTER MILAGE 60

ENTER NUMBER OF SEATS 2

ENTER MODEL 2000

FOR SECOND VEHICLE

ENTER CC 100

ENTER MILAGE 50

ENTER NUMBER OF SEATS 2

ENTER MODEL 2003

INFORMATION OF FIRST VEHICLE

TYPE= TWO WHEELER

MILAGE= 60

CC= 135

No OF SEATS=2

MODEL= 2000

INFORMATION OF SECOND VEHICLE

TYPE= TWO WHEELER

MILAGE= 50

CC= 100

OOP Lab Manual

No OF SEATS=2

MODEL= 2003

AGTI’s, DACOE Karad Page 53

FIRST VEHICLE IS BETTER THAN SECOND VEHICLE

1. TWO WHEELER

2. FOUR WHEELER

3. EXIT

ENTER YOUR CHOICE

2

FOR FIRST VEHICLE

ENTER CC 600

ENTER MILAGE 25

ENTER NUMBER OF SEATS 4

ENTER MODEL 1999

FOR SECOND VEHICLE

ENTER CC 800

ENTER MILAGE 30

ENTER NUMBER OF SEATS 4

ENTER MODEL 2001

INFORMATION OF FIRST VEHICLE

TYPE= FOUR WHEELER

MILAGE= 25

CC= 600

OOP Lab Manual

AGTI’s, DACOE Karad Page 54

No OF SEATS=4

MODEL= 1999

INFORMATION OF SECOND VEHICLE

TYPE= FOUR WHEELER

MILAGE= 30

CC= 800

No OF SEATS=4

MODEL 2001

SECOND VEHICLE IS BETTER THAN FIRST VEHICLE

1. TWO WHEELER

2. FOUR WHEELER

3. EXIT

ENTER YOUR CHOICE

3

Conclusion: - Thus we implemented the concept of Inheritance in terms of Multilevel Inheritance.

OOP Lab Manual

AGTI’s, DACOE Karad Page 55

Experiment No 7

Title: - Implementation of Multiple Inheritance

Aim: - To study & implement the concept of Multiple Inheritances.

Theory:-

Multiple inheritance:

You can derive a class from any number of base classes. Deriving a class from more than

one direct base class is called multiple inheritance. In the following example, classes A, B, and C

are direct base classes for the derived class X:

class A { /* ... */ };

class B { /* ... */ };

class C { /* ... */ };

class X : public A, private B, public C { /* ... */ };

The following inheritance graph describes the inheritance relationships of the above example. An

arrow points to the direct base class of the class at the tail of the arrow:

The order of derivation is relevant only to determine the order of default initialization by

constructors and cleanup by destructors.

A direct base class cannot appear in the base list of a derived class more than once:

class B1 { /* ... */ }; // direct base class

class D : public B1, private B1 { /* ... */ }; // error

OOP Lab Manual

AGTI’s, DACOE Karad Page 56

However, a derived class can inherit an indirect base class more than once, as shown in the

following example:

class L { /* ... */ }; // indirect base class

class B2 : public L { /* ... */ };

class B3 : public L { /* ... */ };

class D : public B2, public B3 { /* ... */ }; // valid

In the above example, class D inherits the indirect base class L once through class B2 and once

through class B3. However, this may lead to ambiguities because two subobjects of class L exist,

and both are accessible through class D. You can avoid this ambiguity by referring to class L using a

qualified class name. For example:

B2::L

or

B3:: L.

You can also avoid this ambiguity by using the base specified virtual to declare a base class.

PROGRAMME:-

// Program to implement Multiple Inheritance :-

#include<iostream>

OOP Lab Manual

AGTI’s, DACOE Karad Page 57

using namespace std;

class employee1

{ protected:

char nm[20];

char dpt[20],des[10];

int code;

public:

void getdata()

{ cout<<"\n\tENTER THE EMPLOYEE NAME:\t";

cin>>nm;

cout<<"\n\tENTER CODE:\t";

cin>>code;

cout<<"\n\t ENTER DEPARTMENT:\t";

cin>>dpt;

cout<<"\n\tENTER DESSIGNATION:\t";

cin>>des;

}};

class employee2

{ protected:

int acno,date,month,year;

public:

void getdata1()

{ cout<<"\n\t ENTER THE ACCOUNT NO:\t";

cin>>acno;

cout<<"\n\t ENTER DATE OF JOINING:\t";

cin>>date>>month>>year; }};

OOP Lab Manual

AGTI’s, DACOE Karad Page 58

class employee3:public employee1,public employee2

{ protected:

public:

float days,sal,salary,den,hra,travel,gross,

prfund,gpf,lic,dedn,net,total1,total2;

void getdata2()

{ employee1::getdata();

employee2::getdata1();

cout<<"\n\tENTER PAYABLE DAYS:\t";

cin>>days;

cout<<"\n\tENTER SALARY PER DAY:\t";

cin>>sal;

}

void formula()

{ salary=days*sal;

den=salary*0.05;

hra=salary*0.12;

travel= salary*0.09;

gross=salary+den+hra+travel;

prfund=salary*0.04;

gpf=salary*0.01;

lic=salary*0.12;

dedn=prfund+gpf+lic;

total1=gross;

total2=dedn;

net=total1-total2; }

OOP Lab Manual

AGTI’s, DACOE Karad Page 59

void display();

};

void employee3::display()

{ int i,j;

cout<<"\n";

for(i=0;i<65;i++)

cout<<"_";

cout<<"\n\t\t\tWIPRO\n";

for(i=0;i<65;i++)

cout<<"_";

cout<<"\n|\tNAME="<<nm<<"\t\t|\tACCOUNT NO="<<acno<<"\t\t|";

cout<<"\n|\tCODE="<<code<<"\t\t|\tDESIGNATION="<<des<<"\t|";

cout<<"\n|\tDEPT="<<dpt<<"\t\t|\tDOJ="<<date<<"/"<<month<<"/"<<

year<<"\t\t|";

cout<<"\n|\t\t\t\t|\tDAYS PAYMENT="<<days<<"\t\t|\n";

for(i=0;i<65;i++)

cout<<"_";

cout<<"\n|PAYMENT\t|\tRs\t|\tDEDUCTION | Rs\t|\n";

for(i=0;i<65;i++)

cout<<"_";

cout<<"\n|BASIC SALARY=\t\t"<<salary<<"\t|\t

PR.FUND=\t"<<prfund<<"\t|";

cout<<"\n|\tDENTAL=\t\t"<<den<<"\t|\tGPF=\t\t"<<gpf<<"\t|";

cout<<"\n|\tHRA=\t\t"<<hra<<"\t|\tLIC=\t\t"<<lic<<"\t|";

cout<<"\n|\tTRAVELLING=\t"<<travel<<"\t|\n";

for(i=0;i<65;i++)

OOP Lab Manual

AGTI’s, DACOE Karad Page 60

cout<<"_";

cout<<"\n|\tTOTAL1="<<total1<<"\t\t|\tTOTAL2="<<total2<<

"\t\t|\n";

for(i=0;i<65;i++)

cout<<"_";

cout<<"\n\tNET PAYMENT="<<net;

cout<<"\n";

for(i=0;i<65;i++)

cout<<"_";

}

void main()

{ employee3 e;

e.getdata2();

e.formula();

e.display();

}

OUTPUT

ENTER THE EMPLOYEE NAME: Rajendara

ENTER CODE: 123

ENTER DEPARTMENT: Construction

ENTER DESSIGNATION: Engineer

ENTER THE ACCOUNT NO: 234

ENTER DATE OF JOINING: 25 04 2000

ENTER PAYABLE DAYS: 30

ENTER SALARY PER DAY: 900

OOP Lab Manual

AGTI’s, DACOE Karad Page 61

WIPRO

| NAME=Rajendara

| CODE=123

|

|

ACCOUNT NO=234

DESIGNATION=Engineer

|

|

| DEPT=Construction | DOJ=25/4/2000 |

| | DAYS PAYMENT=30 |

|PAYMENT |

Rs

|

DEDUCTION | Rs

|

|BASIC SALARY=

27000 | PR.FUND= 1080

|

|DENTAL= 1350 | GPF= 270 |

|HRA= 3240 | LIC= 3240 |

|TRAVELLING= 2430 |

| TOTAL1=34020 |

TOTAL2=4590 |

NET PAYMENT=2943

Conclusion: - Thus we implemented the concept of Inheritance in terms of Multiple Inheritance.

OOP Lab Manual

AGTI’s, DACOE Karad Page 62

Experiment No 8

Title: - Implementation Hierarchical Inheritance

Aim: - To study & implement the concept of Hierarchical inheritance.

Theory:-

Hierarchical inheritance

It is the inheritance hierarchy wherein multiple subclasses inherit from one base class.

In these inheritance , derived class inherits property of Base Class but in these inheritance only one

Base Class and multiple derived class are involved.

SYNTAX:-

class base_class_name

{

private:

…………….

public:

…………….

};

class derived_class_name1 : public base_class_name

private:

……………

public:

……………

};
class derived_class_name2 : public base_class_name

private:

…………..

public:

…………..

};

OOP Lab Manual

AGTI’s, DACOE Karad Page 63

In the Below program Class A is Base Class and Class B ,Class C , derived class.

PROGRAME:

#include<iostream.h>

#include<conio.h>

class A //Base Class

{

public:

int a,b;

void getnumber()

{

cout<<"\n\nEnter Number :::\t";

cin>>a;

}

};

class B : public A //Derived Class 1

{

public:

void square()

{

getnumber(); //Call Base class property

cout<<"\n\n\tSquare of the number :::\t"<<(a*a);

cout<<"\n\n\t ";

}

};

class C :public A //Derived Class 2

{ public:

void cube()

{ getnumber(); //Call Base class property

cout<<"\n\n\tCube of the number :::\t"<<(a*a*a);

cout<<"\n\n\t ";

}

};

int main()

{clrscr();

B b1; //b1 is object of Derived class 1

b1.square(); //call member function of class B

C c1; //c1 is object of Derived class 2

c1.cube(); //call member function of class C

OOP Lab Manual

AGTI’s, DACOE Karad Page 64

getch();

}

OUTPUT

Enter number : : : 2

Square of Number : : : 4

Enter number : : : 3

Cube of Number : : : 9

Conclusion: - Thus we implemented the concept of Inheritance in terms of Hierarchical Inheritance.

OOP Lab Manual

AGTI’s, DACOE Karad Page 65

Experiment No 9

Title: - Implementation of friend class and friend function.

Aim: - To study & implement the concept of Friend class and function.

Theory:-

Friend Functions

The concepts of encapsulation and data hiding dictate that nonmember functions should not be able

to access an object‟s private or protected data. The policy is, if you‟re not a member, you can‟t get

in. However, there are situations where such rigid discrimination leads to considerable

inconvenience.

Friend Classes

The member functions of a class can all be made friends at the same time when you make the entire

class a friend.

// Program to implement concept of friend class.

#include <iostream>
using namespace std;

class alpha

{

private:

int data1;

public:

alpha() : data1(99) { } //constructor

friend class beta; //beta is a friend class

};

class beta

{ //all member functions can

public: //access private alpha data

void func1(alpha a) { cout << “\ndata1=” << a.data1; }

void func2(alpha a) { cout << “\ndata1=” << a.data1; }

};

OOP Lab Manual

AGTI’s, DACOE Karad Page 66

int main()

{
alpha a;

beta b;

b.func1(a);

b.func2(a);

cout << endl;

return 0;

}

In class alpha the entire class beta is proclaimed a friend. Now all the member functions of

beta can access the private data of alpha (in this program the single data item data1).

Note that in the friend declaration we specify that beta is a class using the class keyword:

friend class beta;

We could also have declared beta to be a class before the alpha class specifier, as in previous

examples.

class beta;

and then, within alpha, referred to beta without the class keyword:

friend beta;

b) Friend class and function:-

1) Friend Class:

#include<iostream>

Using namespace std;

class data

{

int rno,year;
char name[30],class1[10],branch[20];

public:

void getdata()

{

cout<<"\n\tENTER ROLL NO\t";

cin>>rno;

cout<<"\n\tENTER NAME\t";

cin>>name;

cout<<"\n\tENTER YEAR\t";

cin>>year;

cout<<"\n\tENTER CLASS\t";

cin>>class1;

cout<<"\n\tENTER BRANCH\t";
cin>>branch;

}

friend class exam;

OOP Lab Manual

AGTI’s, DACOE Karad Page 67

}obj;

class exam

{

int mark[5],tot,avg;

char grade[20];

public:

void getmark();

void total();

void grade1();

void display();

}obj1;

void exam::getmark()

{

int i;

cout<<"\n\tENTER MARKS OF SUBJECTS AS FOLLOWS";

cout<<"\n\t1.DMS\t2.AM\t3.DSMP\t4.DS\t5.CN-1\n";

for(i=0;i<5;i++)

cin>>mark[i];

}

void exam::total()

{
int i;

tot=0;

for(i=0;i<5;i++)

{

tot=tot+mark[i];

}

avg=tot/5;

}

void exam::grade1()

{

if(avg>=66)

strcpy(grade,"DISTINCTION");

else if(avg>=60)

strcpy(grade,"FIRST CLASS");

else if(avg>=50)

strcpy(grade,"SECOND CLASS");

else if(avg>=40)

strcpy(grade,"PASS CLASS");

else

strcpy(grade,"FAIL");

}

OOP Lab Manual

AGTI’s, DACOE Karad Page 68

void exam::display()

{
int j;

cout<<"\n\n";

for(j=0;j<=50;j++)

cout<<"*";

cout<<"\n\tSHIVAJI UNIVERSITY,KOLHAPUR";
cout<<"\n\t\tRESULT";

cout<<"\n\tNAME="<<obj.name;

cout<<"\n\tROLL NO="<<obj.rno<<"\tYEAR="<<obj.year;

cout<<"\n\tCLASS="<<obj.class1<<"\tBRANCH="<<obj.branch;

cout<<"\n\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n|\tSR NO\t|\tSUBJECT\t|\tMARKS\t|";

cout<<"\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n|\t1.\t|\tDMS\t|\t"<<mark[0]<<"\t|";

cout<<"\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n|\t2.\t|\tAM\t|\t"<<mark[1]<<"\t|";

cout<<"\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n|\t3.\t|\tDSMP\t|\t"<<mark[2]<<"\t|";

cout<<"\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n|\t4.\t|\tDS\t|\t"<<mark[3]<<"\t|";

cout<<"\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n|\t5.\t|\tCN-1\t|\t"<<mark[4]<<"\t|";

cout<<"\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n\t\t|\tTOTAL\t|\t"<<tot<<"\t|";

cout<<"\n";

for(j=0;j<=48;j++)

cout<<"_";

cout<<"\n\tAVERAGE="<<avg;

cout<<"\n\tGRADE="<<grade;

cout<<"\n\n";

for(j=0;j<=50;j++)

cout<<"*";

OOP Lab Manual

AGTI’s, DACOE Karad Page 69

}

void main()

{

obj.getdata();

obj1.getmark();

obj1.total();

obj1.grade1();

obj1.display();

}

OUTPUT:

ENTER ROLL NO 123
ENTER NAME Ganesh

ENTER YEAR 2010

ENTER CLASS SE

ENTER BRANCH CSE

ENTER MARKS OF SUBJECTS AS FOLLOWS
1. DMS 2.AM 3. DSMP 4.DS 5.CN-1

70

89

66

58

68

SHIVAJI UNIVERSITY, KOLHAPUR

RESULT

NAME=Ganesh

ROLL NO=123 YEAR=2010

CLASS=SE BRANCH=CSE

|

| |

| |

| |

AVERAGE=70
GRADE=DISTINCTION

 | SR NO | SUBJECT | MARKS |

 | 1. | DMS | 70 |

 | 2. | AM | 89 |

 | 3 DSMP | 66 |

 | 4. DS | 58

 | 5. CN-1 | 68

 TOTAL | 351

OOP Lab Manual

AGTI’s, DACOE Karad Page 70

**

2) Friend Function:

//Program to implement concept of friend function

#include<iostream>
Using namespace std;

class one

{

int a,b,c;

public:

void getdata();

friend int largest(one obj);

}obj2;

void one::getdata()

{

cout<<"\n\tENTER THREE NUMBERS\n";

cin>>a>>b>>c;

}

int largest(one obj)

{

int max;

max=obj.a;

if(obj.b>max)

max=obj.b;

if(obj.c>max)

max=obj.c;

eturn(max);

}

void main()

{

int maxi;

cout<<"\n\tPROGRAM FOR FRIEND FUNCTION";

obj2.getdata();

maxi=largest(obj2);

cout<<"\n\tLARGEST NO="<<maxi;

}

OUTPUT

ENTER THREE NUMBERS

20

30
10
LARGEST NO=30

OOP Lab Manual

AGTI’s, DACOE Karad Page 71

Experiment No 10

Title: - Implementation of Virtual function and Virtual class,

Aim: - To study & implement the concept of Virtual function and Virtual class.

Theory:-

Virtual Functions:

Virtual means existing in appearance but not in reality. When virtual functions are

used, a program that appears to be calling a function of one class may in reality be calling a function

of a different class. Why are virtual functions needed? Suppose you have a number of objects of

different classes but you want to put them all in an array and perform a particular operation on them

using the same function call. For example, suppose a graphics program includes several different

shapes: a triangle, a ball, a square, and so on. Each of these classes has a member function draw()

that causes the object to be drawn on the screen.

Now suppose you plan to make a picture by grouping a number of these elements together and you

want to draw the picture in a convenient way. One approach is to create an array that holds pointers

to all the different objects in the picture. The array might be defined like this:

shape* ptrarr[100]; // array of 100 pointers to shapes

If you insert pointers to all the shapes into this array, you can then draw an entire picture using a

simple loop:

for(int j=0; j<N; j++)

ptrarr[j]->draw();

This is an amazing capability: Completely different functions are executed by the same

function call. If the pointer in ptrarr points to a ball, the function that draws a ball is called; if it

points to a triangle, the triangle-drawing function is called. This is called polymorphism, which

means different forms. The functions have the same appearance, the draw() expression, but different

actual functions are called, depending on the contents of ptrarr[j]. Polymorphism is one of the key

features of Object-Oriented Programming, after classes and inheritance.

For the polymorphic approach to work, several conditions must be met. First, all the

different classes of shapes, such as balls and triangles, must be derived from a single base class

(called shape in MULTSHAP). Second, the draw() function must be declared to be virtual in the

base class. This is all rather abstract, so let‟s start with some short programs that show parts of the

situation, and put everything together later.

OOP Lab Manual

AGTI’s, DACOE Karad Page 72

Virtual Base Classes

Before leaving the subject of virtual programming elements, we should mention virtual base classes

as they relate to multiple inheritance.

Consider the situation shown in Figure 11.3, with a base class, Parent; two derived classes, Child1

and Child2; and a fourth class, Grandchild, derived from both Child1 and Child2.

In this arrangement, a problem can arise if a member function in the Grandchild class wants to

access data or functions in the Parent class.

A compiler error occurs when the getdata() member function in Grandchild attempts to access

basedata in Parent. Why? When the Child1 and Child2 classes are derived from Parent, each inherits

a copy of Parent; this copy is called a subobject. Each of the two subobjects contains its own copy of

Parent‟s data, including basedata. Now, when Grandchild refers to basedata, which of the two copies

will it access? The situation is ambiguous, and that‟s what the compiler reports.

PROGRAMS :-

a) Virtual Functions :-

// Program to implement concept of virtual function..

#include <iostream.h>

class convert

{

protected:

double val1; // initial value

double val2; // converted value

public:
convert(double i) {

val1 = i;

}

double getconv() { return val2; }

double getinit() { return val1; }

virtual void compute() = 0;

};

// Liters to gallons.

class l_to_g : public convert {

public:

l_to_g(double i) : convert(i) { }

void compute() {

val2 = val1 / 3.7854;

}

};

OOP Lab Manual

AGTI’s, DACOE Karad Page 73

// Fahrenheit to Celsius

class f_to_c : public convert {

public:

f_to_c(double i) : convert(i) { }

void compute() {

val2 = (val1-42) / 1.8;

}

};

int main()

{

convert *p; // pointer to base class

l_to_g lgob(4);

f_to_c fcob(70);

// use virtual function mechanism to convert

p = &lgob;

cout << p->getinit() << " liters is ";
p->compute();

cout << p->getconv() << " gallons\n"; // l_to_g

p = &fcob;
cout << p->getinit() << " in Fahrenheit is ";

p->compute();

cout << p->getconv() << " Celsius\n"; // f_to_c

return 0;

}

OUTPUT:

4 liters is 1.056691 gallons

70 in Fahrenheit is 15.555556 Celsius

Conclusion: - Thus we implemented the concept of Virtual function, Virtual class, Friend class and

function.

OOP Lab Manual

AGTI’s, DACOE Karad Page 74

Experiment No 11

Title: - Implementation of File handling

Aim: - To study & implement the concept of File handling.

Theory:-

In C++, you open a file by linking it to a stream. Before you can open a file, you must first

obtain a stream. There are three types of streams: input, output, and input/output.To create an input

stream, you must declare the stream to be of class ifstream. To create an output stream, you must

declare it as class ofstream. Streams that will be performing both input and output operations must

be declared as class fstream. For example, this fragment creates one input stream, one output

stream, and one stream capable of both input and output:

ifstream in; // input

ofstream out; // output

fstream io; // input and output

Once you have created a stream, one way to associate it with a file is by using open(). This

function is a member of each of the three stream classes. The prototype for each is shown here:

void ifstream::open(const char *filename, ios::openmode mode = ios::in);

void ofstream::open(const char *filename, ios::openmode mode = ios::out | ios::trunc);

void fstream::open(const char *filename, ios::openmode mode = ios::in | ios::out

Reading and Writing Text Files:

It is very easy to read from or write to a text file. Simply use the << and >> operators the

same way you do when performing console I/O, except that instead of using cin and cout, substitute

a stream that is linked to a file. For example, this program creates a short inventory file that contains

each item's name and its cost.

Characters vs. Bytes:

Before beginning our examination of unformatted I/O, it is important to clarify an important

concept. For many years, I/O in C and C++ was thought of as byte oriented. This is because a char

is equivalent to a byte and the only types of streams available were char streams. However, with the

advent of wide characters (of type wchar_t) and their attendant streams, we can no longer say that

C++ I/O is byte oriented. Instead, we must say that it is character oriented. Of course, char streams

are still byte oriented and we can continue to think in terms of bytes, especially when operating on

nontextual data. But the equivalency between a byte and a character can no longer be taken for

granted. All of the streams used in this book are char streams since they are by far the most

OOP Lab Manual

AGTI’s, DACOE Karad Page 75

common. They also make unformatted file handling easier because a char stream establishes a one-

to-one correspondence between bytes and characters, which is a benefit when reading or writing

blocks of binary data.

put() and get():

One way that you may read and write unformatted data is by using the member functions

get() and put() . These functions operate on characters. That is, get() will read a character and put()

will write a character. Of course , if you have opened the file for binary operations and are operating

on a char (rather than a wchar_t stream), then these functions read and write bytes of data. The

get() function has many forms, but the most commonly used version is shown here along with put()

:

istream &get(char &ch);

ostream &put(char ch);

Detecting End-of-File:

As we have seen, objects derived from ios contain error-status flags that can be checked to

determine the results of operations. When we read a file little by little, as we do here, we will

eventually encounter an end-of-file (EOF) condition. The EOF is a signal sent to the program from

the operating system when there is no more data to read. In ILINE we could have checked for this in

the line

while(!infile.eof()) // until eof encountered

However, checking specifically for an eofbit means that we won‟t detect the other error

flags, such as the failbit and badbit, which may also occur, although more rarely. To do this, we can

change our loop condition:

while(infile.good()) // until any error encountered

You can also test the stream directly. Any stream object, such as infile, has a value that can

be tested for the usual error conditions, including EOF. If any such condition is true, the object

returns a zero value. If everything is going well, the object returns a nonzero value. This value is

actually a pointer, but the “address” returned has no significance except to be tested for a zero or

nonzero value. Thus we can rewrite our while loop again:

while(infile) // until any error encountered

This is certainly simple, but it may not be quite so clear to the uninitiated what it does.

Closing Files:

So far in most of the programs there has been no need to close streams explicitly because

they are closed automatically when they go out of scope; this invokes their destructors and closes

OOP Lab Manual

AGTI’s, DACOE Karad Page 76

the associated file. Since both the output stream os and the input stream is are associated with the

same file, the first stream must be closed before the second is opened. We use the close() member

function for this. You may want to use an explicit close() every time you close a file, without relying

on the stream‟s destructor. This is potentially more reliable, and certainly makes the listing more

readable.

Mode Bits for open() Function :

Mode Bit Result

in Open for reading (default for ifstream)

out Open for writing (default for ofstream)

ate Start reading or writing at end of file (AT End)

app Start writing at end of file (APPend)

trunc Truncate file to zero length if it exists (TRUNCate)

nocreate Error when opening if file does not already exist

noreplace Error when opening for output if file already exists, unless ate or app is set

binary Open file in binary (not text) mode

Programs:-

1) Writing Data:

// Program to write formatted output to a file, using <<

#include <fstream.h> //for file O

#include <iostream.h>

#include <string.h>

int main()

{ char ch = „x‟;

int j = 77;

OOP Lab Manual

AGTI’s, DACOE Karad Page 77

double d = 6.02;

string str1 = “Hello”; //strings without

string str2 = “World”; // embedded spaces

ofstream outfile(“fdata.txt”); //create ofstream object

outfile << ch //insert (write) data

<< j << „ „ //needs space between numbers

<< d << str1

<< „ „ //needs spaces between strings

<< str2;

out << “File written\n”;

return 0;

}

OUTPUT

File written

//File fdata.txt created

x77 6.02Hello World

2) Reading Data:

// Program to read formatted output from a file, using >>

#include <fstream.h> //for file O

#include <iostream.h>

#include <string.h>

int main()

{

char ch;

int j;

OOP Lab Manual

AGTI’s, DACOE Karad Page 78

double d;

string str1;

string str2;

ifstream infile(“fdata.txt”); //create ifstream object

//extract (read) data from it

infile >> ch >> j >> d >> str1 >> str2;

cout << ch << endl //display the data

<< j << endl

<< d << endl

<< str1 << endl

<< str2 << endl;

return 0;

}

OUTPUT

X

77

6.02

Hello World

Conclusion: - Thus we implemented the concept of File Handling.

OOP Lab Manual

AGTI’s, DACOE Karad Page 79

Experiment No 12

Title: - Implementation of Conversion of Polish expressions.

Aim: - To study & implement the concept of Polish expressions conversion.

Theory:-

Polish notation, also known as prefix notation, is a form of notation for logic, arithmetic,

and algebra. Its distinguishing feature is that it places operators to the left of their operands. If the

parity of the operators is fixed, the result is a syntax lacking parentheses or other brackets that can

still be parsed without ambiguity. The Polish logician Jan Łukasiewicz invented this notation around

1920 in order to simplify sentential logic.Here is a quotation from Nicod's Axiom and Generalizing

Deduction. I came upon the idea of a parenthesis-free notation in 1924. I used that notation for the

first time in my article Łukasiewicz .The reference cited by Jan Łukasiewicz above is apparently a

lithographed report in Polish.

Alonzo Church mentions this notation in his classic book on Mathematical logic as worthy

of remark in notational systems even contrasted to Whitehead and Russell's logical notational

exposition and work in Principia Mathematic.

While no longer used much in logic, Polish notation has since found a place in computer

science. The Arithmetic expression for adding the numbers one and two is, in prefix notation,

written "+ 1 2" rather than "1 + 2". In more complex expressions, the operators still precede their

operands, but the operands may themselves be nontrivial expressions including operators of their

own. For instance, the expression that would be written in conventional infix notation as

(5 − 6) * 7

can be written in prefix as

*(− 5 6) 7

or simply

* − 5 6 7

Since the simple arithmetic operators are all binary (at least, in arithmetic contexts), any

prefix representation thereof is unambiguous, and bracketing the prefix expression is unnecessary.

In the previous example, the parentheses in the infix version were required, since moving them

5 − (6 * 7)

or simply removing them

5 − 6 * 7

would change the meaning and result of the overall expression. However, the corresponding prefix

OOP Lab Manual

AGTI’s, DACOE Karad Page 80

version of this second calculation would be written

− 5 * 6 7

The processing of the subtraction is deferred until both operands of the subtraction have

been read in (i.e., 5 and the product of 6 and 7). As with any notation, the innermost expressions are

evaluated first, but in prefix notation this "innermost-ness" can be conveyed by order rather than

bracketing.

Prefix notation of simple arithmetic is largely of academic interest. Unlike the similar

postfix reverse Polish notation, prefix notation has been used in few if any commercially-made

calculators. However, prefix-notated arithmetic is frequently used as a first, conceptual step in the

teaching of compiler construction.

Computer programming

Prefix notation has seen wide application in Lisp s-expressions, where the brackets are

required due to the arithmetic operators having variable parity. The postfix reverse Polish notation is

used in many stack-based programming languages like PostScript, and is the operating principle of

certain calculators, notably from Hewlett-Packard.

Although obvious, it is important to note that the number of operands in an expression must

equal the number of operators plus one, otherwise the statement makes no sense (assuming only

binary operators are used in the expression). This can be easy to overlook when dealing with longer,

more complicated expressions with several operators, so care must be taken to double check that an

expression makes sense when using prefix notation.

Order of operations

Order of operations is defined within the structure of prefix notation and can be easily

determined. One thing to keep in mind is that when executing an operation, the operation is applied

TO the first operand BY the second operand. This is not an issue with operations that commute, but

for non-commutative operations like division or subtraction, this fact is crucial to the analysis of a

statement. For example, the following statement:

/ 10 5 = 2 (Prefix)

is read as "Divide 10 BY 5". Thus the solution is 2, not ½ as would be the result of an incorrect

analysis.

Prefix notation is especially popular with stack-based operations due to its innate ability to

easily distinguish order of operations without the need for parentheses. To evaluate order of

operations under prefix notation, one does not even need to memorize an operational hierarchy, as

with infix notation. Instead, one looks directly to the notation to discover which operator to evaluate

first. Reading an expression from left to right, one first looks for an operator and proceeds to look

for two operands. If another operator is found before two operands are found, then the old operator

OOP Lab Manual

AGTI’s, DACOE Karad Page 81

is placed aside until this new operator is resolved. This process iterates until an operator is resolved,

which must happen eventually, as there must be one more operand than there are operators in a

complete statement. Once resolved, the operator and the two operands are replaced with a new

operand. Because one operator and two operands are removed and one operand is added, there is a

net loss of one operator and one operand, which still leaves an expression with N operators and N+1

operands, thus allowing the iterative process to continue. This is the general theory behind using

stacks in programming languages to evaluate a statement in prefix notation, although there are

various algorithms that manipulate the process. Once analyzed, a statement in prefix notation

becomes less intimidating to the human mind as it allows some separation from convention with

added convenience.

Program:-

/*Program to implement conversion of Polynomial Expression*/

#include<iostream>

using namespace std;

struct node

{ int coe,exp;

struct node *next;

};

class polynomial

{ struct node *start,*n,*p;

public:

void get_poly();

void show();

void add(polynomial p1,polynomial p2);

};

void polynomial::get_poly()

{ char c='y';

start=NULL;

while(c=='y'||c=='Y')

OOP Lab Manual

AGTI’s, DACOE Karad Page 82

{ n=new node;

cout<<"Enter The Coefficient :";

cin>>n->coe;

cout<<"Enter the Exponent :";

cin>>n->exp;

n->next=NULL;

p->next=n;

if(start==NULL)

{ start=n;

}

p=n;

cout<<"Enter y To add more Nodes";

cin>>c;

}}

void polynomial::show()

{ struct node *ptr;

ptr=start;

while(ptr!=NULL)

{ cout<<ptr->coe<<"X^"<<ptr->exp<<"";

ptr=ptr->next;

if(ptr!=NULL)

cout<<"+";

} cout<<"\n";

}void polynomial::add(polynomial p1,polynomial p2)

{ struct node *p1ptr,*p2ptr;

int coe,exp;

OOP Lab Manual

AGTI’s, DACOE Karad Page 83

start=NULL;

p1ptr=p1.start;

p2ptr=p2.start;

while(p1ptr!=NULL && p2ptr!=NULL)

{ if(p1ptr->exp==p2ptr->exp)

{ coe=p1ptr->coe+p2ptr->coe;

exp=p1ptr->exp;

p1ptr=p1ptr->next;

p2ptr=p2ptr->next;

}

else if(p1ptr->exp>p2ptr->exp)

{ coe=p1ptr->coe;

exp=p1ptr->exp;

p1ptr=p1ptr->next;

}else if(p1ptr->exp<p2ptr->exp)

{ coe=p2ptr->coe;

exp=p2ptr->exp;

p2ptr=p2ptr->next;

}n=new node;

if(start==NULL)

start=n;

n->coe=coe;

n->exp=exp;

n->next=NULL;

p->next=n;

p=n; }

OOP Lab Manual

AGTI’s, DACOE Karad Page 84

if(p1ptr==NULL)

{ while(p2ptr!=NULL)

{ coe=p2ptr->coe;

exp=p2ptr->exp;

p2ptr=p2ptr->next;

n=new node;

if(start==NULL)

start=n;

n->coe=coe;

n->exp=exp;

n->next=NULL;

p->next=n;

p=n;

}

}else if(p2ptr==NULL)

{ while(p1ptr!=NULL)

{ coe=p1ptr->coe;

exp=p1ptr->exp;

p1ptr=p1ptr->next;

n=new node;

if(start==NULL)

start=n;

n->coe=coe;

n->exp=exp;

n->next=NULL;

p->next=n;

OOP Lab Manual

AGTI’s, DACOE Karad Page 85

int main()

{ int ch;

char l;

}}}

p=n;

polynomial p1,p2,sum;

cout<<"\n First Polynomial";

p1.get_poly();

cout<<"\n Second Polynomial";

p2.get_poly();

cout<<"\n First Polynomial is :";

p1.show();

cout<<"\n Second Polynomial is :";

p2.show();

do

{ cout<<"\n 1.Addition";

cout<<"\n 2.Exit";

cout<<"\n Enter the Choice";

cin>>ch;

switch(ch)

{ case 1:

cout<<"\n The sum of two polynomial is: ";

sum.add(p1,p2);

sum.show();

break;

case 2:

OOP Lab Manual

AGTI’s, DACOE Karad Page 86

cout<<"\n Exit";

break;

}

cout<<"\n Do you want continue ";

cin>>l;

}while(l=='y'||l=='Y');

return 0;

}

OUTPUT

First Polynomial

Enter The Coefficient: 2

Enter the Exponent: 4

Enter y to add more Nodes n

Second Polynomial

Enter the Coefficient: 4

Enter the Exponent: 2

Enter y to add more Nodes n

First Polynomial is: 2X^4

Second Polynomial is: 4X^2

1. Addition

2. Exit

Enter the Choice1

The sum of two polynomial is: 2X^4+4X^2

Do you want continue n

Conclusion: - Thus we implemented the concept of Conversion of Polish Expression using C++.

OOP Lab Manual

AGTI’s, DACOE Karad Page 87

Experiment No 13

Title: - Implementation of sorting algorithms is using function template and virtual function.

Aim:- To study & implement the concept of sorting algorithms using function template and virtual

function.

Theory:-

Function Templates:

Many functions have the same code body, regardless of type; for example, initializing the

contents of one array from another of the same type uses the same code body. The essential code is

for (i = 0; i < n; ++i)

a[i] = b[i];

Many programmers automate this with a simple macro:

Now that‟s what I call a generic waiter - he can balance anything!

#define COPY(A, B, N) \

{ int i; for (i=0; i < (N); ++i) (A)[i] = (B)[i]; }

Programming that works regardless of type is a form of generic programming. The use of define

macros is a form of generic programming. Its advantages are several, including simplicity,

familiarity, and efficiency. There is familiarity because of a long tradition in C programming of

using such macros. It is very efficient. There is no function call overhead.

The disadvantages of using macros include type-safety, unanticipated evaluations and

Scoping problems. Using define macros can often work, but doing so is not type-safe. Macro

substitution is a preprocessor textual substitution that is not syntactically checked until later.

Another problem with define macros is that they can lead to repeated evaluation of a single

parameter. Definitions of macros are tied to their position in a file and not to the C++ language rules

for scope.

The code

#define CUBE(X) ((X)*(X)*(X))

behaves differently from the code

template<class T> T cube (T x) { return x * x * x;}

OOP Lab Manual

AGTI’s, DACOE Karad Page 88

When cube(sqrt(7)) is invoked, the function sqrt(7) is called once, not three times as with the

CUBE define macro. Templates are safer when types can be mixed in an expression and conversions

are inappropriate

Future Directions:

C++ templates evolved considerably from their initial design in 1988 until the

standardization of C++ in 1998 (the technical work was completed in November 1997). After that,

the language definition was stable for several years, but during that time various new needs have

arisen in the area of C++ templates. Some of these needs are simply a consequence of a desire for

more consistency or orthogonality in the language. For example, why wouldn't default template

arguments be allowed on function templates when they are allowed on class templates? Other

extensions are prompted by increasingly sophisticated template programming idioms that often

stretch the abilities of existing compilers. In what follows we describe some extensions that have

come up more than once among C++ language and compiler designers. Often such extensions were

prompted by the designers of various advanced C++ libraries (including the C++ standard library).

There is no guarantee that any of these will ever be part of standard C++. On the other hand, some

of these are already provided as extensions by certain C++ implementations.

Program:-

// Program to implement generic bubble sort using concept of template .

#include <iostream.h>

template <class X>

void bubble

(X *items, // pointer to array to be sorted

int count) // number of items in array

{ register int a, b;

X t;

for(a=1; a<count; a++)

for(b=count-1; b>=a; b--)

if(items[b-1] > items[b]) {

// exchange elements

t = items[b-1];

items[b-1] = items[b];

OOP Lab Manual

AGTI’s, DACOE Karad Page 89

items[b] = t;

}

}

int main()

{ int iarray[7] = {7, 5, 4, 3, 9, 8, 6};

double darray[5] = {4.3, 2.5, 1.9, 100.2, 3.0};

int i;

cout << "Here is unsorted integer array: ";

for(i=0; i<7; i++)

cout << iarray[i] << ' ';

cout << endl;

cout << "Here is unsorted double array: ";

for(i=0; i<5; i++)

cout << darray[i] << ' ';

cout << endl;

bubble(iarray, 7);

bubble(darray, 5);

cout << "Here is sorted integer array: ";

for(i=0; i<7; i++)

cout << iarray[i] << ' ';

cout << endl;

cout << "Here is sorted double array: ";

for(i=0; i<5; i++)

cout << darray[i] << ' ';

cout << endl;

return 0;}

OOP Lab Manual

AGTI’s, DACOE Karad Page 90

OUTPUT

Here is unsorted integer array: 7, 5, 4, 3, 9, 8, 6

Here is unsorted double array: 4.3, 2.5, 1.9, 100.2, 3.0

Here is sorted integer array: 3,4,5,6,7,8,9

Here is sorted double array: 1.9, 2.5, 3.0, 4.3, 100.2

Conclusion: - Thus we implemented the concept of sorting algorithms using function template and

virtual function.

OOP Lab Manual

AGTI’s, DACOE Karad Page 91

Experiment No 14

Title: - Implementation of Linear Search and Binary Search using concept of template.

Aim:- To study & implement the concept of Linear Search and Binary Search using function
template.

Theory:-

Search using Function Templates

linear search or sequential search is a method for finding a particular value in a list that checks each

element in sequence until the desired element is found or the list is exhausted.The list need not be

ordered.

Linear search is the simplest search algorithm; it is a special case of brute-force search. Its worst

case cost is proportional to the number of elements in the list. Its expected cost is also proportional

to the number of elements if all elements are searched equally. If the list has more than a few

elements and is searched often, then more complicated search methods such as binary search or

hashing may be appropriate. Those methods have faster search times but require additional

resources to attain that speed.

a binary search or half-interval search algorithm finds the position of a specified input value (the

search "key") within an array sorted by key value.[1][2] For binary search, the array should be

arranged in ascending or descending order. In each step, the algorithm compares the search key

value with the key value of the middle element of the array. If the keys match, then a matching

element has been found and its index, or position, is returned. Otherwise, if the search key is less

than the middle element's key, then the algorithm repeats its action on the sub-array to the left of the

middle element or, if the search key is greater, on the sub-array to the right. If the remaining array to

be searched is empty, then the key cannot be found in the array and a special "not found" indication

is returned.

A binary search halves the number of items to check with each iteration, so locating an item (or

determining its absence) takes logarithmic time. A binary search is a dichotomic divide and conquer

search algorithm.

Program:-

// Program to implement Linear Search and Binary Search using function template

#include<iostream>

template<class T>

void Lsearch(T *a, T item, int n)

OOP Lab Manual

AGTI’s, DACOE Karad Page 92

{ int z=0;

for (inti=0;i<n;i++)

{ if(a[i]== item)

{ z=1;

cout<<"\n Item found at position = "<<i+1<<"\n\n";

}else

if(z!=1)

{ z=0;

}

}if(z==0)

cout<<"\n Item not found in the list\n\n";0

}

Template <class T>

Void Bsearch(T *a, T item, int n)

{ int beg=0,end=n-1;

int mid=beg + end/2;

while ((a[mid]!=item) && (n>0))

{ if(item>a[mid])

beg=mid;

else

end=mid;

mid=(beg + end)/2;

n--;

}

If (a[mid] == item)

cout<<"\n Item found at position = "<<mid+1<<"\n\n";

OOP Lab Manual

AGTI’s, DACOE Karad Page 93

else

cout<<"\n Item not found in the list\n\n";

}void main()

{ intiarr[10] = {2,42,56,86,87,99,323,546,767,886};

doubledarr[6]= {2.4, 5.53,44.4, 54.45, 65.7,89.54};

intiele;

double dele;

cout<<"\n Elements of Integer Array \n";

for(inti=0;i<10;i++)

{ cout<<" "<<iarr[i]<<" ,";

}

cout<<"\n\n Enter an item to be search: ";

cin>>iele;

cout<<"\n\n Linear Search Method\n";

Lsearch(iarr,iele,10);

cout<<"\n\n Binary Search method\n";

Bsearch(iarr,iele,10);

cout<<"\n Elements of double Array \n";

for(inti=0;i<6;i++)

{ cout<<" "<<darr[i]<<" ,";

}

cout<<"\n\n Enter an item to be search: ";

cin>>dele;

cout<<"\n\n Linear Search Method\n";

Lsearch(darr,dele,6);

cout<<"\n\n Binary Search method\n";

OOP Lab Manual

AGTI’s, DACOE Karad Page 94

}

OUTPUT

Bsearch(darr,dele,6);

system("pause");

Elements of Integer Array

2 , 42 , 56 , 86 , 87 , 99 , 323 , 546 , 767 , 886 ,

Enter an item to be search: 323

Linear Search Method

Item found at position = 7

Binary Search method

Item found at position = 7

Elements of double Array

2.4 , 5.53 , 44.4 , 54.45 , 65.7 , 89.54 ,

Enter an item to be search: 5.53

Linear Search Method

Item found at position = 2

Binary Search method

Item found at position = 2

Press any key to continue . . .

Conclusion: - Thus we implemented the concept of Linear Search and Binary Search using function

template.

OOP Lab Manual

AGTI’s, DACOE Karad Page 95

Experiment No 15

Title: - Implementation of stack using class template

Aim: - To study & Implementation of stack using class template

Theory:-

Class Templates:

The template concept can be extended to classes. Class templates are generally used for

data storage (container) classes. However, the examples of these classes that we presented could

store data of only a single basic type. The Stack class in the STAKARAY program “Arrays and

Strings,” for example, could store data only of type int. Here‟s a condensed version of that class.

class Stack

{

private:

int st[MAX]; //array of ints

int top; //index number of top of stack

public:

Stack(); //constructor

void push(int var); //takes int as argument

int pop(); //returns int value

};

A template argument, named Type in this example, is then used (instead of a fixed data type

like int) every place in the class specification where there is a reference to the type of the array st.

There are three such places: the definition of st, the argument type of the push () function, and the

return type of the pop() function. Class templates differ from function templates in the way they are

instantiated. To create an actual function from a function template, you call it using arguments of a

specific type. Classes, however, are instantiated by defining an object using the template argument.

Stack<float> s1;

This creates an object, s1, a stack that stores numbers of type float. The compiler provides

space in memory for this object‟s data, using type float wherever the template argument Type

appears in the class specification. It also provides space for the member functions (if these have not

already been placed in memory by another object of type Stack<float>).

Class Name Depends on Context

In the TEMPSTAK example, the member functions of the class template were all defined within the

class. If the member functions are defined externally (outside of the class specification), we need a

new syntax. The next program shows how this works.

OOP Lab Manual

AGTI’s, DACOE Karad Page 96

Program:-

// Program to implement generic stack using template.

#include <iostream.h>

const int SIZE = 10;

// Create a generic stack class

template <class StackType>

class stack

{ StackType stck[SIZE]; // holds the stack

int tos; // index of top-of-stack

public:

stack()

{ tos = 0;

} // initialize stack

void push(StackType ob); // push object on stack

StackType pop(); // pop object from stack

};

// Push an object.

template <class StackType>

void stack<StackType>::push(StackType ob)

{ if(tos==SIZE)

{ cout << "Stack is full.\n";

return;

} stck[tos] = ob;

tos++;

}// Pop an object.

template <class StackType>

OOP Lab Manual

AGTI’s, DACOE Karad Page 97

StackType stack<StackType>::pop()

{ if(tos==0)

{ cout << "Stack is empty.\n";

return 0; // return null on empty stack

} tos--;

return stck[tos];

}

int main()

{ // Demonstrate character stacks.

stack<char> s1, s2; // create two character stacks

int i;

s1.push('a');

s2.push('x');

s1.push('b');

s2.push('y');

s1.push('c');

s2.push('z');

for(i=0; i<3; i++) cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3; i++) cout << "Pop s2: " << s2.pop() << "\n";

// demonstrate double stacks

stack<double> ds1, ds2; // create two double stacks

ds1.push(1.1);

ds2.push(2.2);

ds1.push(3.3);

ds2.push(4.4);

ds1.push(5.5);

OOP Lab Manual

AGTI’s, DACOE Karad Page 98

ds2.push(6.6);

for(i=0; i<3; i++) cout << "Pop ds1: " << ds1.pop() << "\n";

for(i=0; i<3; i++) cout << "Pop ds2: " << ds2.pop() << "\n";

return 0;

}

OUTPUT

Pop s1: c

Pop s1: b

Pop s1: a

Pop s2: z

Pop s2: y

Pop s2: x

Pop ds1:5.5

Pop ds1:3.3

Pop ds1:1.1

Pop ds2:6.6

Pop ds2:4.4

Pop ds2:2.2

Conclusion: - Thus we implemented the concept of stack using class template.

OOP Lab Manual

AGTI’s, DACOE Karad Page 99

Experiment No 16

Title: - Implementation of queue using class template

Aim: - To study & Implementation of queue using class template

Theory:-

Queue using Class Template

Queue is a particular kind of abstract data type or collection in which the entities in the collection

are kept in order and the principal (or only) operations on the collection are the addition of entities

to the rear terminal position, known as enqueue, and removal of entities from the front terminal

position, known as dequeue. This makes the queue a First-In-First-Out (FIFO) data structure. In a

FIFO data structure, the first element added to the queue will be the first one to be removed. This is

equivalent to the requirement that once a new element is added, all elements that were added before

have to be removed before the new element can be removed. Often a peek or front operation is also

entered, returning the value of the front element without dequeuing it. A queue is an example of a

linear data structure, or more abstractly a sequential collection.

Templates are the foundation of generic programming, which involves writing code in a way that is

independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function. The library containers

like iterators and algorithms are examples of generic programming and have been developed using

template concept.

There is a single definition of each container, such as vector, but we can define many different kinds

of vectors for example, vector <int> or vector <string>.

You can use templates to define functions as well as classes, let us see how do they work:

Function Template:

The general form of a template function definition is shown here:

Here, type is a placeholder name for a data type used by the function. This name can be used within

the function definition.

template<class type> ret-type func-name(parameter list)

{

// body of function

}

OOP Lab Manual

AGTI’s, DACOE Karad Page 100

Program:-

// Program to implement queue using class template.

#include<iostream>

#include<stdlib.h>

#include<process.h>

template<class T>

class Queue

{ private:

intfront,rear;

T *queue;

intmaxsize;

public:

Queue(intmaxqueuesize)

{

front=0;

rear=-1;

maxsize=maxqueuesize;

queue=new T[maxsize];

}

~Queue()

{

delete[] queue;

}

intisempty();

intisfull();

void insert();

void deletion();

void atfront();

void atrear();

void display();

};

template<class T>

int Queue<T>::isempty()

{

if(front==0&&rear==-1||front==rear)

return 1;

else

return 0;

OOP Lab Manual

AGTI’s, DACOE Karad Page 101

}

template<class T>

int Queue<T>::isfull()

{

if(rear==maxsize-1)

return 1;

else

return 0;

}

template<class T>

void Queue<T>::atfront()

{

if(isempty())

cout<<"\nSorry the queue is empty!";

else

cout<<"\nFront element of the queue is : "<<queue[front];

}

template<class T>

void Queue<T>::atrear()

{

if(isempty())

cout<<"\nSorry the queue is empty!";

else

cout<<"\nRear element of the queue is : "<<queue[rear];

}

template<class T>

void Queue<T>::insert()

{

T ele;

if(isfull())

cout<<"\nSorry the queue is full!";

else

{

cout<<"\nEnter the element to insert : ";

cin>>ele;

queue[++rear]=ele;

}

}

template<class T>

void Queue<T>::deletion()

{

if(isempty())

OOP Lab Manual

AGTI’s, DACOE Karad Page 102

cout<<"\nSorry the queue is empty!";

else

cout<<"\nDeleted element of the queue is : "<<queue[front++];

}

template<class T>

void Queue<T>::display()

{

if(isempty())

cout<<"\nSorry the queue is empty!";

else

{

cout<<"\nQueue elements are : ";

for(inti=front;i<=rear;i++)

{

cout<<"\t"<<queue[i];

}

}

}

int main()

{

int ch;

Queue <int> q(10);

do

{

cout<<"\n 1.Insertion \n 2.Deletion \n 3.Display Front Element \n

4. Display Rear Element \n 5.Display Queue \n 6.Exit \n";

cout<<"Enter your Choice:";

cin>>ch;

switch(ch)

{ case 1:

q.insert();

break;

case 2:

q.deletion();

break;

case 3:

q.atfront();

break;

case 4:

q.atrear();

break;

OOP Lab Manual

AGTI’s, DACOE Karad Page 103

case 5:

q.display();

break;

case 6:

exit(0);

break;

default: cout<<"\nWrong Choice Entered!";

} }while(ch<=6);

system("pause");

return 0;

}

OUTPUT 1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:1

Enter the element to insert : 10

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:1

Enter the element to insert : 20

1.Insertion

2. Deletion

OOP Lab Manual

AGTI’s, DACOE Karad Page 104

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:1

Enter the element to insert : 30

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:1

Enter the element to insert : 40

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:1

Enter the element to insert : 50

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

OOP Lab Manual

AGTI’s, DACOE Karad Page 105

5.Display Queue

6.Exit

Enter your Choice:5

Queue elements are : 10 20 30 40 50

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:4

Rear element of the queue is : 50

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:5

Queue elements are : 10 20 30 40 50

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

OOP Lab Manual

AGTI’s, DACOE Karad Page 106

Enter your Choice:2

Deleted element of the queue is : 10

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice:5

Queue elements are : 20 30 40 50

1.Insertion

2. Deletion

3. Display Front Element

4.Display Rear Element

5.Display Queue

6.Exit

Enter your Choice: 6

Conclusion: - Thus we implemented the concept of queue using class template.

OOP Lab Manual

AGTI’s, DACOE Karad Page 107

Experiment No 17

Title: - Implementation of Exception Handling.

Aim: - To study & Implementation of Exception Handling.

Theory:

Exception handling:

Exception handling is a mechanism that separates code that detects and handles exceptional

circumstances from the rest of your program. Note that an exceptional circumstance is not

necessarily an error.

When a function detects an exceptional situation, you represent this with an object. This

object is called an exception object. In order to deal with the exceptional situation you throw the

exception. This passes control, as well as the exception, to a designated block of code in a direct or

indirect caller of the function that threw the exception. This block of code is called a handler. In a

handler, you specify the types of exceptions that it may process. The C++ run time, together with

the generated code, will pass control to the first appropriate handler that is able to process the

exception thrown. When this happens, an exception is caught. A handler may rethrow an exception

so it can be caught by another handler.

The exception handling mechanism is made up of the following elements:

 try blocks

 catch blocks

 throw expressions

try blocks

You use a try block to indicate which areas in your program that might throw exceptions you

want to handle immediately. You use a function try block to indicate that you want to detect

exceptions in the entire body of a function.

try block syntax

. .

V |

>>-try { statements } handler-+ ><

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/language/ref/the_try_keyword.htm#the_try_keyword
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/language/ref/the_catch_keyword.htm#the_catch_keyword
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/language/ref/the_throw_keyword.htm#the_throw_keyword

OOP Lab Manual

AGTI’s, DACOE Karad Page 108

Function try block syntax

catch blocks :

catch block syntax

>>-catch--(--exception_declaration--)--{--statements--} ------- ><

You can declare a handler to catch many types of exceptions. The allowable objects that a

function can catch are declared in the parentheses following the catch keyword (the

exception_declaration). You can catch objects

Program:

/*Program to implement concept of Exception Handling */

#include<iostream>

using namespace std;

int main()

{

int a,b,x;

cout<<"\n\t Enter values of a&b";

cin>>a;

cin>>b;

x=a-b;

try {

{

}

else

{

}

if(x!=0)

cout<<"\n\t Result (a/x)="<<a/x<<"\n";

throw(x);

}

catch(int i)

{

cout<<"\n\t Exception caught: x="<<x<<"\n";
}

cout<<"\n\t END";

return 0;

}

>>-try--+----------------------------+--function_body--- handler-+-><

'--- member_initializer_list-'

OOP Lab Manual

AGTI’s, DACOE Karad Page 109

OUTPUT

Enter Values of a & b

20 15

Result(a/x)=4

END

Enter Values of a & b

10 10

Exception caught:x=0

END

Conclusion:

Thus we have implement concept of Exception handling by using different clauses.

OOP Lab Manual

AGTI’s, DACOE Karad Page 110

Experiment No 18

Title: - Implementation of different programs by using C++ libraries for graphics purpose.

Aim: - To study & implement different programs by using C++ libraries for graphics purpose .

Theory:

In C++ graph unit provides a complete set of library consisting of over 80 graphics

routines that range from bit oriented routine to high level calls. In addition to the graphical

constants and types. In order to C++ graphics routines the following hardware components should

be installed in PC system.

 A graphics display controller

 A color monitor or any other display device.

For graph initialization and closing routines we use procedure and functions are given below,

Cleardevice:-This method is used to clear the graphics screen.It is also used to clear currently

selected output device.

Syntax:-

void cleardevice(void);

Closegraph:-This method is used to shut down the graphics system.

Syntax:-

void closegraph(void);

Detectgraph:-This method is used to check the hardware and determine which graph driver and

mode to use.

Syntax:-

void detectgraph(void);

Getdrivername:-This method is used to return a string containing the name of the current driver.

Syntax:-

char getdrivername(void);

Getgraphmode:- This method is used to return current graphics mode.

Syntax:-

OOP Lab Manual

AGTI’s, DACOE Karad Page 111

int getgraphmode(void);

Initgraph:- This method is used to initalize the graphics system and put the hardware into graphics

mode.

Syntax:-

void far initgraph(int graphdriver, int graphmode,char pathtodriver);

Line and Polygon selection routines :

There are different procedure and functions that are used to perform line and polygine

selection.

Line:- This method is used to draw a line from the point (x1,y1) to (x2,y2).

Syntax:-

void line(int x1, int y1, int x2, int y2);

Circle:- This method is used to draw a circle in the current color set by setcolor, using (x,y) as the

center point.

Syntax:-

void circle(int x,int y,int radius);

Drawpoly: - This method is used to draw the outline of a polygone using the current line style and

color.

Syntax:-

void drawpoly(int numpoint, int polypoint);

Ellipse: - This method is used to draw an ellipse arc using current color.

Syntax:-

void ellipse(int x,int y,int stangle, int endangle, int xradius, int yradius);

Rectangle: - This method is used to draw a rectangle using line style ,thickness and drawing color.

Syntax:-

void rectangle(int left, int top, int right, int bottom);

Color selection routines: Following are the color constants used in C++,

OOP Lab Manual

AGTI’s, DACOE Karad Page 112

Colors Name Color Number

Black 0

Blue 1

Green 2

Cyan 3

Red 4

Magenta 5

Brown 6

Light gray 7

There are different procedure and functions that are used to perform the color selection operation in

C++.

Setcolor: - This method is used to set current drawing color.

Syntax:- Void setcolor(int color);

Setbkcolor: - This method is used to set the current background color.

Syntax:-

Void setbkcolor(int color);

getcolor:- This method is used to return current drawing color.

Syntax:- int setcolor(void);

getbkcolor:- This method is used to return the current background color.

Syntax:- int getbkcolor(void);

PROGRAM:

//Program to draw Circle using graphics libraries.

#include <graphics.h>

#include <stdlib.h>

#include <iostream.h>

#include <conio.h>

const int radius = 100;

OOP Lab Manual

class sample

{ private:

int midx,midy;

public:

void getdata();

void draw_circle();

};

void sample::getdata()

{midx = getmaxx()/2;

midy = getmaxy()/2;

}

void sample::draw_circle()

{circle(midx,midy,radius);

}

void main(void)

{ sample obj;

int gdriver =DETECT,gmode;//auto detection

initgraph(&gdriver,&gmode,"\\tc\\bgi");

obj.getdata();

obj.draw_circle();

getch();

cleardevice();//clears a graphics screen

closegraph();

}

 AGTI’s, DACOE Karad Page 113

OOP Lab Manual

AGTI’s, DACOE Karad Page 114

OUTPUT

Conclusion: - Thus we implemented program which draws circle using the methods of C++

graphics libraries.

OOP Lab Manual

Program for Exercise

AGTI’s, DACOE Karad Page 115

1 Program to find sum of two numbers.

2 Program to find area and circumference of circle.

3 Program to find the simple interest.

4 Program to convert temperature from degree centigrade to Fahrenheit.

5 Program to calculate sum of 5 subjects & find percentage.

6 Program to show swap of two no‟s without using third variable.

7 Program to reverse a given number.

8 Program to find gross salary.

9 Program to print a table of any number.

10 Program to find greatest in 3 numbers.

11 Program to show the use of conditional operator.

12 Program to find that entered year is leap year or not.

13 Program to find whether given no is even or odd.

14 Program to shift inputed data by two bits to the left.
15 Program to use switch statement. Display Monday to Sunday.

16 Program to display arithmetic operator using switch case.

17 Program to display first 10 natural no & their sum.

18 Program to print stars Sequence1.

19 Program to print stars Sequence2.

20 Program to print star Sequences3.

21 Program to print Fibonacci series up to 100.
22 Program to find factorial of a number.

23 Program to find whether given no is a prime no or not.

24 Program to display sum of series 1+1/2+1/3+… +1/n.

25 Program to display series and find sum of 1+3+5+ +n.

26 Program to use bitwise AND operator between the two integers.

27 Program to add two number using pointer.

28 Program to show sum of 10 elements of array & show the average.

29 Program to find the maximum no in an array.

30 Program to display matrix.

31 Program to find sum of two matrices.

32 Program to find subtraction of two matrices.

33 Program to find multiplication of two matrices.

34 Program to find transpose of a matrix.

35 Program to find the maximum number in array using pointer.

36 Program to reverse a number using pointer.

37 Program to show input and output of a string.

38 Program to find square of a number using functions.

39 Program to swap two numbers using functions.

40 Program to find factorial of a number using functions.

41 Program to show table of a number using functions.

42 Program to show call by value.

43 Program to show call by reference.
44 Program to find largest of two numbers using functions.

45 Program to find factorial of a number using recursion.

46 Program to find whether a string is palindrome or not.

OOP Lab Manual

Program for Exercise

AGTI’s, DACOE Karad Page 116

1. Write a program to find out the gross amount from the given basic pay.

Gross = Basic + DA + HRA

DA & HRA can be calculated as follows: -

If Basic Pay is greater than or equal to 8000 DA is 20% of Basic Pay & HRA is 25% of

Basic Pay, otherwise DA is 15% of Basic Pay & HRA is 20% of Basic Pay.

Using three functions input, calculate and display.

2. Raising a number n to a power p is the same as multiplying n by itself p times. Write a

function called power () that takes a double value for n and an int value for p, and returns

the result as double value. Use a default argument of 2 for p, so that if this argument is

omitted, the number will be squared. Write a main () function that gets values from the user

to test this function.

3. Write a program to print a triangles like the followings using function overloading: -

(a) 1

(b) 1

(c) 1

(d) 1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

2 3

4 5 6

7 8 9 10

11 12 13 14

1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1

4. A point on the two dimensional plane can be represented by two numbers: an X coordinate

and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin

along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new

point whose X coordinate is the sum of the X coordinates of the points and whose Y

coordinate is the sum of their Y coordinates.

Write a program that uses a structure called point to model a point. Define three points, and

have the user input values to two of them. Than set the third point equal to the sum of the

other two, and display the value of the new point. Interaction with the program might look

like this:

OOP Lab Manual

AGTI’s, DACOE Karad Page 117

Enter coordinates for P1: 3 4

Enter coordinates for P2: 5 7

Coordinates of P1 + P2 are: 8, 11

5. Write a program for Multiplication of the two matrixes and store it in another matrix.

Display the new matrix using three functions one for input, second for multiplication with

array as argument and display for output.

6. Create the equivalent of a four function calculator. The program should request the user to

enter a number, an operator, and another number. It should then carry out the specified

arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It

should use a switch statement to select the operation). Finally it should display the result.

When it finishes the calculation, the program should ask if the user wants to do another

calculation. The response can be „Y‟ or „N‟. Some sample interaction with the program

might look like this.

Enter first number, operator, second number: 10/ 3

Answer = 3.333333

Do another (Y/ N)? Y

Enter first number, operator, second number 12 + 100

Answer = 112

Do another (Y/ N)? N

7. Write a program to calculate the income tax of „n‟ number of employees using class as

structure. Use a separate inline function to calculate the tax. Rate of tax is 20% of basic

salary if it is less than 9000 otherwise tax is 25% of basic salary.

8. A phone number, such as (91) 120-4370000, can be thought of as having three parts: the

country code (91), city code (120) and the number (4370000). Write a program that uses a

structure to store these three parts of a phone number separately. Call the structure phone.

Create two structure variables of type phone. Initialize one, and have the user input a number

for the other one. Then display both numbers. The interchange might look like this:

Enter your area code, exchange, and number: (91) 124-4513999

My number is (91) 120-4370000

Your number is (91) 124-4513999

OOP Lab Manual

AGTI’s, DACOE Karad Page 118

9. Create two classes DM and DB which store the value of distances. DM stores distances in

metres and centimeters and DB in feet and inches. Write a program that can read values for

the class objects and add one object of DM with another object of DB.

Use a friend function to carry out the addition operation. The object that stores the results

maybe a DM object or DB object, depending on the units in which the results are required.

The display should be in the format of feet and inches or metres and cenitmetres depending

on the object on display.

10. Create a class rational which represents a numerical value by two double values-

NUMERATOR & DENOMINATOR. Include the following public member Functions:

• constructor with no arguments (default).

• constructor with two arguments.
• void reduce() that reduces the rational number by eliminating the highest common factor

between the numerator and denominator.

• Overload + operator to add two rational number.

• Overload << operator to enable output through cout.

Write a main () to test all the functions in the class.

11. Consider the following class definition

class father {

protected :int age;

public;

father (int x) {age = x;}

virtual void iam ()

{ cout<< “I AM THE FATHER, my age is : ”<< age<< end1:}

};

Derive the two classes son and daughter from the above class and for each, define iam () to

write our similar but appropriate messages. You should also define suitable constructors for

these classes. Now, write a main () that creates objects of the three classes and then calls

iam () for them.

Declare pointer to father. Successively, assign addresses of objects of the two derived classes

to this pointer and in each case, call iam () through the pointer to demonstrate

OOP Lab Manual

AGTI’s, DACOE Karad Page 119

polymorphism in action.

12. Write a program that creates a binary file by reading the data for the students from the

terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of

characters) and marks.

13. A hospital wants to create a database regarding its indoor patients. The information to store

include

a) Name of the patient

b) Date of admission

c) Disease

d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class

to store the above information. The member function should include functions to enter

information and display a list of all the patients in the database. Create a derived class to

store the age of the patients. List the information about all, to store the age of the patients.

List the information about all the pediatric patients (less than twelve years in age).

14. Make a class Employee with a name and salary. Make a class Manager inherit from

Employee. Add an instance variable, named department, of type string. Supply a method to

toStringthat prints the manager‟s name, department and salary. Make a class Executive

inherit from Manager. Supply a method to String that prints the string “Executive”

followed by the information stored in the Manager superclass object. Supply a test program

that tests these classes and methods.

15. Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int

to hold the total number of cars, and a type double to hold the total amount of money

collected. A constructor initializes both these to 0. A member function called payingCar ()

increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (

), increments the car total but adds nothing to the cash total. Finally, a member function

called displays the two totals.

Include a program to test this class. This program should allow the user to push one key to

count a paying car, and another to count a nonpaying car. Pushing the ESC key should cause

the program to print out the total cars and total cash and then exit.

OOP Lab Manual

AGTI’s, DACOE Karad Page 120

16. Write a function called reversit () that reverses a string (an array of char). Use a for loop that

swaps the first and last characters, then the second and next to last characters and so on. The

string should be passed to reversit () as an argument.

Write a program to exercise reversit (). The program should get a string from the user, call

reversit (), and print out the result. Use an input method that allows embedded blanks. Test

the program with Napoleon‟s famous phrase, “Able was I ere I saw Elba)”.

17. Create some objects of the string class, and put them in a Deque-some at the head of the

Deque and some at the tail. Display the contents of the Deque using the forEach () function

and a user written display function. Then search the Deque for a particular string, using the

first That () function and display any strings that match. Finally remove all the items from

the Deque using the getLeft () function and display each item. Notice the order in which the

items are displayed: Using getLeft (), those inserted on the left (head) of the Deque are

removed in “last in first out” order while those put on the right side are removed in “first in

first out” order. The opposite would be true if getRight () were used.

18. Create a base class called shape. Use this class to store two double type values that could be

used to compute the area of figures. Derive two specific classes called triangle and rectangle

from the base shape. Add to the base class, a member function get_data () to initialize base

class data members and another member function display_area () to compute and display the

area of figures. Make display_area () as a virtual function and redefine this function in the

derived classes to suit their requirements.

Using these three classes, design a program that will accept dimensions of a triangle or a

rectangle interactively and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of

rectangles and as base and height in the case of triangles and used as follows:

Area of rectangle = x * y

Area of triangle = ½ * x * y

19. Write a program to create the card class and group an array of 52 such objects together in an

array, thus creating a deck of cards. Display the cards in the deck, shuffle it , and then

display it again.

20. Write a menu driven program for stack implementation using inheritance concept of class.

OOP Lab Manual

AGTI’s, DACOE Karad Page 121

21. Write a single function to find out min value of different data type.

22. Write program for sorting and searching single array for different data type using class

concept.

23. Write a program to two different type of argument. The data type must decide at run time.

24. Write a program for array bound checking using exception handling with class concept.

25. Write a program using constructor to handle divide by zero exception.

26. Write a program to write employee detail in the file.

27. Write a program to search give employee detail in the file.

28. Write a program to read a file and print the number of vowels and number of words in the

file. Assume that a word is a sequence of letters ending with a blank, or a tab, or an end of

line marker or end of file or punctuation symbols such as “,”, ”.”, ”!” and “?”.

AGTI’s DACOE Karad Page 1

Laboratory Manual

2023-24

Sub:- Operating System-I (OS-I)

S.Y.B.Tech (CSE)
Prepared By

Prof. Karande A.A.

 G.K. Gujar Memorial Charitable Trust’s,

 Dr.Ashok Gujar Technical Institute’s

 Dr. Daulatrao Aher College of Engineering, Karad.
 Vidyanagar Ext. Banawadi, Tal. Karad 415124, Dist. Satara, Maharashtra INDIA

Prepared By:- Prof. Karande A.A.

Approved By:

Head of Department

Prepared By: Prof. Karande A. A. Page 2

EXPERIMENT LIST

Department: Computer Science & Engg. Academic Year: 2023-24

Class: Second Year (S.Y.B.Tech. CSE) Semester: IV

Subject: Operating System-I Semester Duration: 6 months

Sr. No. Experiment Name

1. Installation of Windows operating System and Linux operating System

2. Execute general purpose utilities in Linux.

3. Execute process, file & directory related commands in Linux.

4. To study of various UNIX editors such as vi, ed, ex and EMACS.

5. Write C programs to simulate Producer – Consumer Problem.

6. Write C programs to simulate CPU scheduling algorithms: FCFS, SJF, and Round

Robin.

7. Write a C program to simulate Bankers algorithm for the purpose of deadlock

avoidance.

8. Write a C program to simulate page replacement algorithms.

9. Write a C program to simulate the following memory allocation techniques

a) Worst-fit b) Best-fit c) First-fit

10. Write a C program to simulate the following file organization techniques

a) Single level directory b) Two level directory c) Hierarchical

 Page 3

Experiment No 1

TITLE:

Installation of Windows operating System and Linux operating System

DESCRIPTION:

 Installing or upgrading Windows

To start the Windows install or upgrade process, you need to configure your computer to boot from a CD

or DVD before booting to the hard drive. Changing the boot process forces the computer to look for the

Windows installation disc before booting from the hard drive.

1. Open the CMOS setup.

 How to enter the BIOS or CMOS setup.

2. Change the computer's boot order. Set the CD, DVD, or disc drive as the first boot device

if you are trying to boot from a disc. Or, set the first boot device to your USB drive if

you're trying to boot from a USB thumb drive. If the drive is not shown, keep the disc is

inserted and reboot the computer. With the disc in the drive, BIOS should recognize and

include it in the list.

3. Save the settings change and exit BIOS.

Once you have updated the boot order, you can begin the Windows installation process.

4. Place the Windows disc in the CD/DVD drive or USB thumb drive into the back of the

computer.

5. Turn on or restart the computer. As the computer starts up, it should detect the

installation disc or drive and show a message similar to Press any key to boot from CD.

Press any key on the keyboard to have the computer boot from the Windows disc or

drive.

6. After the Windows install begins, there are several prompts that you need to answer.

Select either Yes or the appropriate option to install Windows.

7. When asked which partition to install Windows onto, select the main partition, usually

the C: drive or one labeled "Unallocated partition". If upgrading Windows, select the

existing installation of Windows on the hard drive.

8. You may be asked if you want to erase all contents on the hard drive, then install

Windows. We recommend you choose this option, as it also formats the hard drive to

allow the Windows operating system to be installed.

https://www.computerhope.com/jargon/h/harddriv.htm
https://www.computerhope.com/issues/ch000192.htm
https://www.computerhope.com/jargon/b/bootsequ.htm
https://www.computerhope.com/jargon/r/reboot.htm
https://www.computerhope.com/jargon/p/partition.htm

 Page 4

9. The computer may need to restart several times during the Windows install process. The

restarts are normal and if prompted to restart, select the Yes option.

10. When the install process is nearly complete, the Windows configuration option screens

are shown. On these screens, you may be asked to select the time zone you live in, your

preferred language, and the account's name you use to access Windows. Select the

appropriate options and enter the appropriate information on each configuration screen.

The Windows install process is completed when the computer prompts you to log in or when it loads into

Windows.

 Installation of Linux operating System

Linux is the base of many of open source operating systems designed to replace Windows
and Mac OS. It is free to download and install on any computer. Because it is open source,
there are a variety of different versions, or distributions, available developed by different
groups. To prevent hacking attempts, many organizations keep their Linux operating systems
private. Many others make their variations of Linux available publicly so the whole world
can benefit at large.

Step 1: Download the ISO file.

Step 2: Boot your system with Bootable DVD / USB drive.

To start the installation click on “Install Ubuntu”

Step 3: Check Install Prerequisite

Step 4: Select the Installation Type

Step 5: Select your respective Time Zone

Step 6: Select your respective Keyboard Layout

Step 7: Set the Hostname of your system and User credentials that will be used after installation.

Installation has started. Once the installation is completed, it will ask to restart the Machine.
Click on “Restart Now”

Step 8: Login Screen after reboot.

Use the same user and its credentials that we have set during the installation. We will get below
screen after entering the credentials.
Ubuntu Installation is Completed Now.

Conclusion: - Installation of Windows operating System and Linux operating System

 Page 5

TITLE:

Experiment No 2

Execute general purpose utilities in Linux.

DESCRIPTION:

UNIX is now one of the most commonly used Operating systems used for various purposes such as

Personal use, Servers, Smartphone’s, and many more. It was developed in the 1970’s at AT & T Labs

by two famous personalities Dennis M. Ritchie and Ken Thompson.

 The most important part of the Linux is Linux Kernel which was first released in early 90’s by Linus

Torvalds. There are several Linux distros available (most are open-source and free to download and

use) such as Ubuntu, Debian, Fedora, Kali, Mint, Gentoo, Arch and much more.

 Now coming to the Basic and most usable commands of Linux/Unix part. (Please note that all the

Linux/Unix commands are run in the terminal of a Linux system. Terminal is like command prompt

as that of in Windows OS)

 Linux/Unix commands are case-sensitive i.e Hello is different from hello.

Commands:

Sr
no

Commands Syntax Description

1

Who
$ who The ‘$ who’ command displays all

the users who have logged into the

system currently

2

pwd

$ pwd

he ‘$pwd’ command stands for

‘print working directory’ and as

the name says,it displays the

directory in which we are
currently

3

mkdir
$ mkdir newfolder The ‘$ mkdir’ stands for ‘make

directory’ and it creates a new

directory.

4

rmdir

$ rmdir newfolder

The ‘$ rmdir’ command deletes

any directory we want to delete

and you can remember it by its

names ‘rmdir’ which stands for
‘remove directory’.

5

cd

$ cd newfolder
he ‘$ cd’ command stands for

‘change directory’ and it changes

your current directory to the
‘newfolder’ directory.

6 ls $ls
The ‘ls’ command simply displays

the contents of a directory.

7

touch

$ touch example
The ‘$ touch’ command creates a

file(not directory) and you can

simple add an extension such as
.txt after it to make it a Text File.

https://en.wikipedia.org/wiki/Linux_kernel

 Page 6

8

cp

$ cp /home/harssh/file.txt

/home/harssh/new/
This ‘$ cp ‘ command stands for

‘copy’ and it simply copy/paste

the file wherever you want to.

9

mv

$ mv /home/harssh/file.txt

/home/harssh/new

The ‘$ mv’ command stands for

‘move’ and it simply move a file

from a directory to another
directory.

10

rm
$ rm file.txt The ‘$ rm ‘ command for remove

and the ‘-r’ simply recursively

deletes file.

11

chmod

$ chmod +w file.txt

$ chmod +r file.txt

$ chmod +x file.txt

he ‘$ chmod’ command stands for

change mode command

12

cal
$ cal The ‘$ cal’ means calendar and it

simply display calendar on to your

screen.

13

man

$ man pwd
he ‘$ man’ command stands for

‘manual’ and it can display the in-

built manual for most of the

commands that we ever need.

14

passwd

$ passwd
The ‘$ passwd’ command simply

changes the password of the

user.In above case ‘harssh’ is the
user.

15

clear

$ clear
The ‘$ clear’ command is used to

clean up the terminal so that you
can type with more accuracy

16 date $ date Used to check the date and time

17 echo $echo “text”
Used to print the message on the
screen.

18 lp $lp filename Used to take printouts

19

uptime

$uptime
Tells you how long the computer
has been running since its last
reboot or power-off.

20 hostname $ hostname Displays and set system host name

Conclusion: - Hence we studied general purpose utilities command in Linux

 Page 7

TITLE:

Experiment No 3

Execute process, file & directory related commands in Linux.

DESCRIPTION:

 Process related commands in Linux:-

Linux provides us utility called ps for viewing information related with the processes on a

system which stands as abbreviation for “Process Status”. ps command is used to list the currently

running processes and their PIDs along with some other information depends on different

options. It reads the process information from the virtual files in /proc file-system. /proc contains

virtual files, this is the reason it’s referred as a virtual file system.

Commands:

Sr
no

Commands Syntax Description

1

ps

$ps
The ps command is used to view

currently running processes on the
system.

2

wait

$wait
Waits until all background

processes are completed and then
exits.

3

sleep

$sleep 30
Used to execute commands after

certain amount of time by sleeping
for given seconds.

4 exit $exit Use the quit the shell

5

kill

$kill 0
Used to stop execution of particular
process by sending an intemipt

signal to the process.

Options of ps commands:

$ps -f Full listing showing PPID of each process.

$ps -u username Displays processes of user ‘username’

$ps -a Processes of all users

$ps -e Processes including user and system processes.

Options of kill commands:
$kill 0 Kills all the processes on the terminal except

the login shell by special argument ‘0’

$ki11 120 230 234 Kills three processes with pid 120 230 234

$kill -9 0 Kills all processes including login shell

$kill -9 $$ Kills login shell

 Page 8

 File & directory related commands in Linux:
Unix uses a hierarchical structure for organizing files and directories. This structure is called as a

directory tree. The tree has a single root node, the slash character (/), and all other directories are
contained below it. When user first log in to the UNIX server, the specified directory is called as Home
directory.

Directory Structure in Unix/Linux:

Directory manipulation commands are as follows:

1. mkdir 2. cd 3. rmdir 4. pwd

1. ‘mkdir’ command:

It is used to create a new directory in a current directory.
$mkdir <directory named Example:

$mkdir CM5I

User can create more than one directory in a single command.

$mkdir subjectl subject2

If user wants to create directory on the specific path then syntax is:

$mkdir path/Directory name

2. ‘cd’ command:

The ‘cd’ command is used to change directory. You can use it to change to any directory

by specifying a valid absolute or relative path.

The syntax is as given below

$cd <directory name>

Example

$ cd Directory name

$cd CM5I

$cd .

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 9

Example:

$cd ..

$ cd /

Example:

$ cd /

To come out from current working directory.

It changes to root directory.

3. ’rmdir’ command

It is used to delete/ remove a directory. If the parent directory having subdirectories then

first all subdirectories will be deleted then the parent directory is deleted.

$rmdir <directory named

4. ‘pwd’ command

pwd stands for Present Working Directory. This is most used Linux command to see the

specific Unix Directory on which the user is working on.

$pwd

diff command:

This command is used to show difference between two text files. It also tells which line in

one has to be changed to make the two files identical.

Syntax:

$diff filename1 filename2

The options of the result should be like this —
a -Added the text to file

c -Changes are made in the file

d -Deletion operation is performed

< -Lines from the first file

> -Lines from the second file

$cat file1.txt

I need to go to the shop.

I need to buy some mangoes. When I get home, I'll wash the cat.

$cat file2.txt

I need to go to the shop.

I need to buy some mangoes.

Oh yeah, I also need to buy cheese. When I get home, I'll wash the cat.

Use the diff command to compare both files.

$ diff fiIe1.txt file2.txt

The above command should give the result as shown below — 2a3

> Oh yeah, I also need to buy cheese.

From the output, 2a3 means “After line 2 in the first file, a line needs to be added: line 3
from the second file”.

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 10

comm command:

This command compares two sorted files. It compares each line of first file with its

corresponding line in the second file and generates three column output.

The first column lists the lines only in first file.
The second column lists the lines only in second file. The third column lists the lines in

both files.

Syntax:

$comm filenamel filename2 Example:

$cat studentl Harsh

Sujay Smith

$comm studentl student2

$cat student2 Harsh

Niket Ashutosh

Sujay

Smith
Niket Ashutosh

Harsh

pr command:

pr - convert text files for printing
The pr command does minor formatting of files on the terminal screen or for a printer. For

example, if you have a long list of names in a file, you can format it onscreen into two or

more columns.

The syntax is:

pr option(s) filename(s)

pr changes the format of the file only on the screen or on the printed copy; it doesn't modify

the original file.

dir command:

It is used to list all files and directories.

Conclusion: - Hence we studied process, file & directory related commands in Linux

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 11

TITLE:

Experiment No 4

To study of various UNIX editors such as vi, ed, ex and EMACS.

DESCRIPTION:

Editor is a program that allows user to see a portions a file on the screen and modify

characters and lines by simply typing at the current position. UNIX supports variety of Editors.

They are:

ed, ex, vi, EMACS

 Vi-
vi is stands for “visual”. vi is the most important and powerful editor. vi is a full screen editor

that allows user to view and edit entire document at the same time. vi editor was written in the

University of California, at Berkley by Bill Joy, who is one of the co-founder of Sun

Microsystems.

Features of vi:

It is easy to learn and has more powerful features.

It works great speed and is case sensitive. vi has powerful undo functions and has 3 modes:

1. Command mode- In command mode, no text is displayed on the screen.

2. Insert mode- In Insert mode, it permits user to edit insert or replace text.

3. Escape or ex mode- In escape mode, it displays commands at command line.

Moving the cursor with the help of h, l, k, j, I, etc

 EMACS Editor-

Motion Commands:

M-> Move to end of file

M-< Move to beginning of file

C-v Move forward a screen

M –v Move backward a screen

C –n Move to next line

C-p Move to previous line

C-a Move to the beginning of the line

C-e Move to the end of the line

C-f Move forward a character

C-b Move backward a character

M-f Move forward a word

M-b Move backward a word

Deletion Commands:

DEL delete the previous character

C –d delete the current character

M –DEL delete the previous word

M-d delete the next word

C-x DEL deletes the previous sentence

M-k delete the rest of the current sentence

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 12

C-k deletes the rest of the current line

C-xu undo the lasted it change

Search and Replace in EMACS:

y- Change the occurrence of the pattern

n- Don‟t change the occurrence, but look for the other q Don‟t change. Leave query

replace completely

! - Change this occurrence and all others in the file

Conclusion: - Hence we studied of various UNIX editors such as vi, ed, ex and EMACS

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 13

TITLE:

Experiment No 5

Write C programs to simulate Producer – Consumer Problem.

DESCRIPTION:

Producer-consumer problem is a common paradigm for cooperating processes. A producer process

produces information that is consumed by a consumer process. One solution to the producer-consumer

problem uses shared memory. To allow producer and consumer processes to run concurrently, there

must be available a buffer of items that can be filled by the producer and emptied by the consumer. This

buffer will reside in a region of memory that is shared by the producer and consumer processes. A

producer can produce one item while the consumer is consuming another item. The producer and

consumer must be synchronized, so that the consumer does not try to consume an item that has not yet

been produced.

PROGRAM

#include<stdio.h>

void main()

{

int buffer[10], bufsize, in, out, produce, consume, choice=0;

in = 0;

out = 0;

bufsize = 10;

while(choice !=3)

{

printf(“\n1. Produce \t 2. Consume \t3. Exit”);

printf(“\nEnter your choice: ”);

scanf(“%d”,

&choice);

switch(choice) {

case 1: if((in+1)%bufsize==out)

printf(“\nBuffer is Full”);

else

{

}

Break;

printf(“\nEnter the value: “);

scanf(“%d”, &produce);

buffer[in] = produce;

in = (in+1)%bufsize;

case 2: if(in == out)

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 14

printf(“\nBuffer is Empty”);

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 15

} } }

else

{

}

break;

consume = buffer[out];

printf(“\nThe consumed value is %d”, consume);

out = (out+1)%bufsize;

OUTPUT

1. Produce

2. Consume

3. Exit

Enter your choice: 2

Buffer is Empty

1. Produce

2. Consume

3. Exit

Enter your choice: 1

Enter the value: 100

1. Produce

2. Consume

3. Exit

Enter your choice: 2

The consumed value is 100

1. Produce

2. Consume

3. Exit

Enter your choice: 3

Conclusions: Hence we studied producer consumer problem.

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 16

Experiment No 6

TITLE:

Write C programs to simulate CPU scheduling algorithms: FCFS, SJF, and Round

Robin.

DESCRIPTION:

FCFS

To calculate the average waiting time using the FCFS algorithm first the waiting

time of the first process is kept zero and the waiting time of the second process is the burst

time of the first process and the waiting time of the third process is the sum of the burst

times of the first and the second process and so on. After calculating all the waiting times

the average waiting time is calculated as the average of all the waiting times. FCFS mainly

says first come first serve the algorithm which came first will be served first.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process name and the burst time

Step 4: Set the waiting of the first process as ‗0‘and its burst time as its turnaround time

Step 5: for each process in the Ready Q calculate

a) Waiting time (n) = waiting time (n-1) + Burst

time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst

time(n)

Step 6: Calculate

a) Average waiting time = Total waiting Time / Number of process

b) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

SOURCE CODE:

#include<stdio.>

#include<conio.h>

main()

{

int bt[20], wt[20], tat[20], i, n;

float wtavg, tatavg;

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 17

clrscr();

printf("\nEnter the number of processes --");

scanf("%d", &n);

for(i=0;i<n;i++)

{

printf("\nEnter Burst Time for Process %d -- ", i);

scanf("%d", &bt[i]);

}

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n);

getch();

}

INPUT

Enter the number of processes -- 3

Enter Burst Time for Process 0 -- 24

Enter Burst Time for Process 1 -- 3

Enter Burst Time for Process 2 -- 3

OUTPUT

PROCESS

BURST

TIME

WAITING TIME

TURNAROUND

P0

24

0

TIME

24

P1 3 24 27

P2 3 27 30

Average Waiting Time-- 17.000000

Average Turnaround Time -- 27.000000

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 18

SJF:

To calculate the average waiting time in the shortest job first algorithm the sorting

of the process based on their burst time in ascending order then calculate the waiting

time of each process as the sum of the bursting times of all the process previous or

before to that process.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the

CPU burst time

Step 4: Start the Ready Q according the shortest Burst time by sorting

according to lowest to highest burst time.

Step 5: Set the waiting time of the first process as ‗0‘ and its turnaround time as

its burst time.

Step 6: Sort the processes names based on their Burt time

Step 7: For each process in the ready queue, calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 8: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of

process

Step 9: Stop the process

SOURCE CODE :

#includ<stdio.h>

#include<conio.h>

main()

{

int p[20], bt[20], wt[20], tat[20], i, k, n, temp; float

wtavg,tatavg;

clrscr();

printf("\nEnter the number of processes -- ");

scanf("%d", &n);

for(i=0;i<n;i++)

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 19

{

p[i]=i;

printf("Enter Burst Time for Process %d -- ", i);

scanf("%d", &bt[i]);

}

for(i=0;i<n;i++)

for(k=i+1;k<n;k++)

if(bt[i]>bt[k])

{

temp=bt[i];bt[i]=bt[k]; bt[k]=temp;

temp=p[i];p[i]=p[k]; p[k]=temp;

}

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n);
getch();
}

INPUT

Enter the number of processes --

4

Enter Burst Time for Process 0 -- 6

Enter Burst Time for Process 1 -- 8

Enter Burst Time for Process 2 -- 7

Enter Burst Time for Process 3 -- 3

OUTPUT

PROCESS BURST WAITING TURNARO

 TIME TIME UND TIME

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 20

P3 3 0 3

P0 6 3 9

P2 7 9 16

P1 8 16 24

Average Waiting Time -- 7.000000

Average Turnaround Time -- 13.000000

ROUND ROBIN:

To aim is to calculate the average waiting time. There will be a time slice, each process

should be executed within that time-slice and if not it will go to the waiting state so first

check whether the burst time is less than the time-slice. If it is less than it assign the waiting

time to the sum of the total times. If it is greater than the burst-time then subtract the time

slot from the actual burst time and increment it by time-slot and the loop continues until all

the processes are completed.

ALGORITHM:
Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue and time quantum

(or) timeslice

Step 3: For each process in the ready Q, assign the process id and accept the

CPU bursttime

Step 4: Calculate the no. of time slices for each process where

No. of timeslice for process (n) = burst time process (n)/time slice

Step 5: If the burst time is less than the time slice then the no. of time slices =1.

Step 6: Consider the ready queue is a circular Q, calculate

a) Waiting time for process (n) = waiting time of

process(n-1)+ burst time ofprocess(n-1) + the time

difference in getting the CPU from process(n-1)

b) Turnaround time for process(n) = waiting time of

process(n) + burst time ofprocess(n)+ the time

difference in getting CPU from process(n).

Step 7: Calculate

a) Average waiting time = Total waiting Time / Number of process

b) Average Turnaround time = Total Turnaround Time / Number of process

Step8: Stop the process

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 21

SOURCE CODE
#include<stdio.h>

main()

{

inti,j,n,bu[10],wa[10],tat[10],t,ct[10],max;float awt=0,att=0,temp=0;

clrscr();

printf("Enter the no of processes -- ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("\nEnter Burst Time for process %d -- ", i+1);

scanf("%d",&bu[i]);

ct[i]=bu[i];

}

printf("\nEnter the size of time slice -- ");

scanf("%d",&t);

max=bu[0]; for(i=1;i<n;i++)

if(max<bu[i]) max=bu[i];

for(j=0;j<(max/t)+1;j++)

for(i=0;i<n;i++)

if(bu[i]!=0)

if(bu[i]<=t)

{

tat[i]=temp+bu[i];

temp=temp+bu[i];

bu[i]=0;

}

Else

{

bu[i]=bu[i]-t;

temp=temp+t;

}

for(i=0;i<n;i++)

{

wa[i]=tat[i]-ct[i];

att+=tat[i];

awt+=wa[i];

}

printf("\nThe Average Turnaround time is -- %f",att/n);

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 22

printf("\nThe Average Waiting time is -- %f ",awt/n);

printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\t%d \t %d \t\t %d \t\t %d \n",i+1,ct[i],wa[i],tat[i]);

getch();

}

INPUT:

Enter the no of processes – 3

Enter Burst Time for process

1 – 24

Enter Burst Time for process

2 - 3

Enter Burst Time for process

3 – 3

Enter the size of time slice –

3

OUTPUT:

PROCESS

BURST TIME

WAITING TIME

TURNAROUNDTIME

1 24 6 30

2 3 4 7

3 3 7 10

The Average Turnaround time is -15.666667

The Average Waiting time is: 5.666667

Conclusion: - Hence we implement C programs to simulate CPU scheduling algorithms: FCFS, SJF, and

Round Robin.

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 23

Experiment No 7

TITLE:

Write a C program to simulate Bankers algorithm for the purpose of deadlock

Avoidance.

DESCRIPTION:

In a multiprogramming environment, several processes may compete for a finite number of

resources. A process requests resources; if the resources are not available at that time, the

process enters a waiting state. Sometimes, a waiting process is never again able to change

state, because the resources it has requested are held by other waiting processes. This

situation is called a deadlock. Deadlock avoidance is one of the techniques for handling

deadlocks. This approach requires that the operating system be given in advance additional

information concerning which resources a process will request and use during its lifetime.

With this additional knowledge, it can decide for each request whether or not the process

should wait. To decide whether the current request can be satisfied or must be delayed, the

system must consider the resources currently available, the resources currently allocated to

each process, and the future requests and releases of each process. Banker’s algorithm is a

deadlock avoidance algorithm that is applicable to a system with multiple instances of each

resource type.

PROGRAM

#include<stdio.h>

int main()

{

int n, r, i, j, k;

n = 5;

r = 3;

int alloc[5][3] = { { 0, 0, 1 },{ 3, 0, 0 },{ 1, 0, 1 },{ 2, 3, 2 },{ 0, 0, 3 } };

int max[5][3] = { { 7, 6, 3 }, { 3, 2, 2 },{ 8, 0, 2 },{ 2, 1, 2 },{ 5, 2, 3 } }; // P0 // MAX Matrix

int avail[3] = { 2, 3, 2 }; // These are Available Resources

int f[n], ans[n], ind = 0;

for (k = 0; k < n; k++)

{

f[k] = 0;

}

int need[n][r];

for (i = 0; i < n; i++)

{

for (j = 0; j < r; j++)

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 24

need[i][j] = max[i][j] - alloc[i][j];

}

int y = 0;

for (k = 0; k < 5; k++) {

for (i = 0; i < n; i++) {

if (f[i] == 0)

{

int flag = 0;

for (j = 0; j < r; j++)

{

if (need[i][j] > avail[j])

{

flag = 1;

break;

}

}

if (flag == 0)

{

ans[ind++] = i;

for (y = 0; y < r; y++)

avail[y] += alloc[i][y];

f[i] = 1;

}

}

}

}

printf("Th SAFE Sequence is as follows\n");

for (i = 0; i < n - 1; i++)

printf(" P%d ->", ans[i]);

printf(" P%d", ans[n - 1]);

return (0);

}

Output:

The Safe sequence is as follows:

P1->P3->P4->P0->P2

Conclusion: - Hence we implement C program to simulate Bankers algorithm for the purpose of
deadlock avoidance.

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 25

Experiment No 8

TITLE:

Write a C program to simulate page replacement algorithms.

DESCRIPTION:

Page replacement is basic to demand paging. It completes the separation between logical memory and

physical memory. With this mechanism, an enormous virtual memory cans be provided for programmers

on a smaller physical memory. There are many different page-replacement algorithms. Every operating

system probably has its own replacement scheme. A FIFO replacement algorithm associates with each

page the time when that page was brought into memory. When a page must be replaced, the oldest page is

chosen. If the recent past is used as an approximation of the near future, then the page that has not been

used for the longest period of time can be replaced. This approach is the Least Recently Used (LRU)

algorithm. LRU replacement associates with each page the time of that page's last use. When a

page must be replaced, LRU chooses the page that has not been used for the longest period of time. Least

frequently used (LFU) page-replacement algorithm requires that the page with the smallest count be

replaced. The reason for this selection is that an actively used page should have a large reference count.

Optimal page replacement algorithm has the lowest page-fault rate of all algorithms and will never suffer

from Belady's anomaly. The basic idea is to replace the page that will not be used for the longest

period of time. Use of this page-replacement algorithm guarantees the lowest possible page fault rate for

a fixed number of frames. Unfortunately, the optimal page- replacement algorithm is difficult to

implement, because it requires future knowledge of the reference string.

PROGRAM

a) Fifo Page Replacement Algorithm
#include<stdio.h>

int main()

{

int incomingStream[] = {4, 1, 2, 4, 5};

int pageFaults = 0;

int frames = 3;

int m, n, s, pages;

pages = sizeof(incomingStream)/sizeof(incomingStream[0]);

printf("Incoming \t Frame 1 \t Frame 2 \t Frame 3");

int temp[frames];

for(m = 0; m < frames; m++)

{

temp[m] = -1;

}

for(m = 0; m < pages; m++)

{

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 26

s = 0;

for(n = 0; n < frames; n++)

{

if(incomingStream[m] == temp[n])

{

s++;

pageFaults--;

}

}

pageFaults++;

if((pageFaults <= frames) && (s == 0))

{

temp[m] = incomingStream[m];

}

else if(s == 0)

{

temp[(pageFaults - 1) % frames] = incomingStream[m];

}

printf("\n");

printf("%d\t\t\t",incomingStream[m]);

for(n = 0; n < frames; n++)

{

if(temp[n] != -1)

printf(" %d\t\t\t", temp[n]);

else

printf(" - \t\t\t");

}

}

printf("\nTotal Page Faults:\t%d\n", pageFaults);

return 0;

}

OUTPUT:-

Incoming Frame 1 Frame 2 Frame 3

4 4 - -

1 4 1 -

2 4 1 2

4 4 1 2

5 5 1 2

Total Page Faults: 4

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 27

b) LRU:
#include<stdio.h>

int main()

{

int q[20],p[50],c=0,c1,d,f,i,j,k=0,n,r,t,b[20],c2[20];

printf("Enter no of pages:");

scanf("%d",&n);

printf("Enter the reference string:");

for(i=0;i<n;i++)

scanf("%d",&p[i]);

printf("Enter no of frames:");

scanf("%d",&f);

q[k]=p[k];

printf("\n\t%d\n",q[k]);

c++;

k++;

for(i=1;i<n;i++)

{

c1=0;

for(j=0;j<f;j++)

{

if(p[i]!=q[j])

c1++;

}

if(c1==f)

{

c++;

if(k<f)

{

q[k]=p[i];

k++;

for(j=0;j<k;j++)

printf("\t%d",q[j]);

printf("\n");

}

else

{

for(r=0;r<f;r++)

{

c2[r]=0;

for(j=i-1;j<n;j--)

{

if(q[r]!=p[j])

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 28

c2[r]++;

else

break;

}

}

for(r=0;r<f;r++)

b[r]=c2[r];

for(r=0;r<f;r++)

{

for(j=r;j<f;j++)

{

if(b[r]<b[j])

{

t=b[r];

b[r]=b[j];

b[j]=t;

}

}

}

for(r=0;r<f;r++)

{

if(c2[r]==b[0])

q[r]=p[i];

printf("\t%d",q[r]);

}

printf("\n");

}

}

}

printf("\nThe no of page faults is %d",c);

}

OUTPUT:

Enter no of pages:10

Enter the reference string: 7 5 9 4 3 7 9 6 2 1

Enter no of frames:3

7

7 5

7 5 9

4 5 9

4 3 9

4 3 7

9 3 7

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 29

9 6 7

9 6 2

1 6 2

The no of page faults is 10

c) LFU:
#include<stdio.h>

#include<conio.h>

main()

{

int rs[50], i, j, k, m, f, cntr[20], a[20], min, pf=0;

clrscr();

printf("\nEnter number of page references -- ");

scanf("%d",&m);

printf("\nEnter the reference string -- ");

for(i=0;i<m;i++)

scanf("%d",&rs[i]);

printf("\nEnter the available no. of frames -- ");

scanf("%d",&f);

for(i=0;i<f;i++)

{

cntr[i]=0; a[i]=-1;

}

printf(“\nThe Page Replacement Process is – \n“);

for(i=0;i<m;i++)

{

for(j=0;j<f;j++)

if(rs[i]==a[j])

{

cntr[j]++;

break;

if(j==f)

{ min = 0;

for(k=1;k<f;k++)

if(cntr[k]<cntr[min])

min=k;

a[min]=rs[i]; cntr[min]=1;

pf++;

}

printf("\n");

for(j=0;j<f;j++)

printf("\t%d",a[j]);

if(j==f)

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 30

}

printf(“\tPF No. %d”,pf);}

printf("\n\n Total number of page faults -- %d",pf);

getch();

}

INPUT

Enter number of page references -- 10

Enter the reference string -- 1 2 3 4 5 2 5 2 5 1 4 3

Enter the available no. of frames -- 3

OUTPUT

The Page Replacement Process is –

1 -1 -1 PF No. 1

1 2 -1 PF No. 2

1 2 3 PF No. 3

4 2 3 PF No. 4

5 2 3 PF No. 5

5 2 3

5 2 3

5 2 1 PF No. 6

5 2 4 PF No. 7

5 2 3 PF No. 8

Total number of page faults – 8

d) OPTIMAL
#include<stdio.h>

int n;

main()

{

int seq[30],fr[5],pos[5],find,flag,max,i,j,m,k,t,s;

int count=1,pf=0,p=0;

float pfr; clrscr();

printf("Enter maximum limit of the sequence: ");

scanf("%d",&max);

printf("\nEnter the sequence: ");

for(i=0;i<max;i++)

scanf("%d",&seq[i]);

printf("\nEnter no. of frames: ");

scanf("%d",&n);

fr[0]=seq[0];

pf++;

printf("%d\t",fr[0]);

i=1;

while(count<n)

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 31

{

flag=1; p++;

for(j=0;j<i;j++)

{

if(seq[i]==seq[j]) flag=0;

}

if(flag!=0)

{

fr[count]=seq[i];

printf("%d\t",fr[count]);

count++;

pf++;

}

i++;

}

printf("\n");

for(i=p;i<max;i++)

{

flag=1;

for(j=0;j<n;j++)

{

if(seq[i]==fr[j])

flag=0;

}

if(flag!=0)

{

for(j=0;j<n;j++)

{

m=fr[j];

for(k=i;k<max;k++)

{

if(seq[k]==m)

{

pos[j]=k;

break;

}

else

pos[j]=1;

}

}

for(k=0;k<n;k++)

{

if(pos[k]==1)

flag=0;

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 32

}

if(flag!=0)

s=findmax(pos);

if(flag==0)

{

for(k=0;k<n;k++)

{

if(pos[k]==1)

{

s=k;

break;

}

}

}

fr[s]=seq[i];

for(k=0;k<n;k++)

printf("%d\t",fr[k]);

pf++;

printf("\n");

}

}

pfr=(float)pf/(float)max;

printf("\nThe no. of page faults are %d",pf);

printf("\nPage fault rate %f",pfr);

getch();

}

int findmax(int a[])

{

int max,i,k=0;

max=a[0];

for(i=0;i<n;i++)

{

if(max<a[i])

{

max=a[i];

k=i;

}

}

return k;

}

INPUT

Enter number of page references -- 10

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 33

Enter the reference string -- 1 2 3 4 5 2 5 2 5 1 4 3

Enter the available no. of frames – 3

OUTPUT

The Page Replacement Process is –

1 -1 -1 PF No. 1

1 2 -1 PF No. 2

1 2 3 PF No. 3

4 2 3 PF No. 4

5 2 3 PF No. 5

5 2 3

5 2 3

5 2 1 PF No. 6

5 2 4 PF No. 7

5 2 3 PF No. 8

Total number of page faults – 8

Conclusion: Hence we studied page replacement algorithm in detail.

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 34

Experiment No 9

TITLE:

Write a C program to simulate the following memory allocation techniques

a) Worst-fit b) Best-fit c) First-fit

DESCRIPTION:

One of the simplest methods for memory allocation is to divide memory into several fixed-sized

partitions. Each partition may contain exactly one process. In this multiple-partition method, when a

partition is free, a process is selected from the input queue and is loaded into the free partition. When the

process terminates, the partition becomes available for another process. The operating system keeps a table

indicating which parts of memory are available and which are occupied. Finally, when a process arrives and

needs memory, a memory section large enough for this process is provided. When it is time to load or swap

a process into main memory, and if there is more than one free block of memory of sufficient size, then the

operating system must decide which free block to allocate. Best-fit strategy chooses the block that is closest

in size to the request. First-fit chooses the first available block that is large enough. Worst-fit chooses the

largest available block.

PROGRAM

a)WORST-FIT

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int frag[max],b[max],f[max],i,j,nb,nf,temp;

static int bf[max],ff[max];

clrscr();
printf("\n\tMemory Management Scheme - First Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{
printf("File %d:",i);

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 35

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

{

ff[i]=j;
break;

}

}

}

frag[i]=temp;

bf[ff[i]]=1;

}

printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

}

INPUT

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-
Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 1 5 4

2 4 3 7 3

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 36

b) Best-fit

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;
static int bf[max],ff[max];

clrscr();
printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}
printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

if(lowest>temp)

{

ff[i]=j;

lowest=temp;

}}}
frag[i]=lowest;

bf[ff[i]]=1;

lowest=10000;

}
printf("\nFile No\tFile Size \tBlock No\tBlock Size\tFragment");

for(i=1;i<=nf && ff[i]!=0;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 37

getch();

}

INPUT
Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-
Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 2 2 1

2 4 1 5 1

c) First-fit

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{
int frag[max],b[max],f[max],i,j,nb,nf,temp,highest=0;
static int bf[max],ff[max];

clrscr();
printf("\n\tMemory Management Scheme - Worst Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 38

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1) //if bf[j] is not allocated

{

temp=b[j]-f[i];

if(temp>=0)

if(highest<temp)

{
ff[i]=j;

highest=temp;

}}}

frag[i]=highest;

bf[ff[i]]=1;

highest=0;

}
printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

}

INPUT

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-
File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 3 7 6

2 4 1 5 1

Conclusion: Hence we implement C program to simulate the following memory allocation techniques

a) Worst-fit b) Best-fit c) First-fit

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 39

Experiment No 10

TITLE:

Write a C program to simulate the following file organization techniques

a) Single level directory b) Two level directory c) Hierarchical

DESCRIPTION:

The directory structure is the organization of files into a hierarchy of folders. In a single-level

directory system, all the files are placed in one directory. There is a root directory which has all files. It has

a simple architecture and there are no sub directories. Advantage of single level directory system is that it

is easy to find a file in the directory. In the two-level directory system, each user has own user file directory

(UFD). The system maintains a master block that has one entry for each user. This master block contains

the addresses of the directory of the users. When a user job starts or a user logs in, the system's master file

directory (MFD) is searched. When a user refers to a particular file, only his own UFD is searched. This

effectively solves the name collision problem and isolates users from one another. Hierarchical directory

structure allows users to create their own subdirectories and to organize their files accordingly. A tree is the

most common directory structure. The tree has a root directory, and every file in the system has a unique

path name. A directory (or subdirectory) contains a set of files or subdirectories.

PROGRAM

1. SINGLE LEVEL DIRECTORY ORGANIZATION

#include<stdio.h>

struct

{
char dname[10],fname[10][10];

int fcnt;

}dir;

void main()

{

int i,ch;

char f[30];

clrscr();

dir.fcnt = 0;

printf("\nEnter name of directory -- ");

scanf("%s", dir.dname);

while(1)

{
printf("\n\n 1. Create File\t2. Delete File\t3. Search File \n 4. Display Files\t5. Exit\nEnter your choice --

");

scanf("%d",&ch);

switch(ch)

{
case 1: printf("\n Enter the name of the file -- ");
scanf("%s",dir.fname[dir.fcnt]);

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 40

dir.fcnt++;

break;

case 2: printf("\n Enter the name of the file -- ");

scanf("%s",f);

for(i=0;i<dir.fcnt;i++)

{

if(strcmp(f, dir.fname[i])==0)

{

printf("File %s is deleted ",f);

strcpy(dir.fname[i],dir.fname[dir.fcnt-1]);

break;

}

}

if(i==dir.fcnt)

printf("File %s not found",f);

else

dir.fcnt--;

break;

case 3: printf("\n Enter the name of the file -- ");

scanf("%s",f);

for(i=0;i<dir.fcnt;i++)

{

if(strcmp(f, dir.fname[i])==0)

{
printf("File %s is found ", f);

break;

}

}

if(i==dir.fcnt)
printf("File %s not found",f);

break;

case 4: if(dir.fcnt==0)

printf("\n Directory Empty");

else

{

printf("\n The Files are -- ");

for(i=0;i<dir.fcnt;i++)

printf("\t%s",dir.fname[i]);

}

break;

default: exit(0);

}

}

getch();

}

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 41

OUTPUT:

Enter name of directory -- CSE

1. Create File

2. Delete File

3. Search File

4. Display Files
5. Exit
Enter your choice – 1

Enter the name of the file -- A

1. Create File

2. Delete File

3. Search File

4. Display Files
5. Exit

Enter your choice – 1

Enter the name of the file -- B

1. Create File

2. Delete File
3. Search File

4. Display Files

5. Exit

Enter your choice – 1
Enter the name of the file -- C

1. Create File

2. Delete File
3. Search File

4. Display Files
5. Exit

Enter your choice – 4

The Files are -- A B C

1. Create File

2. Delete File

3. Search File
4. Display Files

5. Exit

Enter your choice – 3
Enter the name of the file – ABC

File ABC not found

1. Create File
2. Delete File

3. Search File

4. Display Files
5. Exit

Enter your choice – 2

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 42

Enter the name of the file – B
File B is deleted

1. Create File

2. Delete File

3. Search File
4. Display Files

5. Exit
Enter your choice – 5

2. TWO LEVEL DIRECTORY ORGANIZATION

#include<stdio.h>

struct

{

char dname[10],fname[10][10];

int fcnt;

}dir[10];

void main()

{
int i,ch,dcnt,k;

char f[30], d[30];

clrscr();

dcnt=0;

while(1)

{
printf("\n\n 1. Create Directory\t 2. Create File\t 3. Delete File");

printf("\n 4. Search File \t \t 5. Display \t 6. Exit \t Enter your choice -- ");

scanf("%d",&ch);

switch(ch)
{
case 1: printf("\n Enter name of directory -- ");

scanf("%s", dir[dcnt].dname);

dir[dcnt].fcnt=0;

dcnt++;
printf("Directory created");

break;

case 2: printf("\n Enter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

if(strcmp(d,dir[i].dname)==0)

{
printf("Enter name of the file -- ");

scanf("%s",dir[i].fname[dir[i].fcnt]);

dir[i].fcnt++;

printf("File created");
break;

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 43

}

if(i==dcnt)

printf("Directory %s not found",d);

break;

case 3: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{
printf("File %s is deleted ",f);

dir[i].fcnt--;

strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);

goto jmp;

}

}

printf("File %s not found",f);

goto jmp;

}
}

printf("Directory %s not found",d);

jmp : break;

case 4: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)
{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter the name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is found ",f);

goto jmp1;

}

}

printf("File %s not found",f);
goto jmp1;

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 44

}

}

printf("Directory %s not found",d);

jmp1: break;

case 5: if(dcnt==0)

printf("\nNo Directory's ");

else

{

printf("\nDirectory\tFiles");

for(i=0;i<dcnt;i++)

{
printf("\n%s\t\t",dir[i].dname);

for(k=0;k<dir[i].fcnt;k++)

printf("\t%s",dir[i].fname[k]);

}
}
break;

default:exit(0);

}

}

getch();

}

OUTPUT:

1. Create Directory
2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Enter your choice -- 1
Enter name of directory -- DIR1

Directory created

1. Create Directory

2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Enter your choice -- 1

Enter name of directory -- DIR2

Directory created

1. Create Directory

2. Create File

3. Delete File

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 45

4. Search File

5. Display

6. Exit

Enter your choice -- 2
Enter name of the directory – DIR1

Enter name of the file -- A1

File created

1. Create Directory

2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A2

File created

1. Create Directory

2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Enter your choice -- 2

Enter name of the directory – DIR2

Enter name of the file -- B1

File created

1. Create Directory

2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Enter your choice -- 5

Directory Files

DIR1 A1 A2

DIR2 B1

1. Create Directory

2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 46

Enter your choice -- 4

Enter name of the directory – DIR

Directory not found

1. Create Directory

2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Enter your choice -- 3

Enter name of the directory – DIR1

Enter name of the file -- A2

File A2 is deleted

1. Create Directory

2. Create File

3. Delete File

4. Search File

5. Display

6. Exit

Enter your choice – 6

3. HIERARCHICAL DIRECTORY ORGANIZATION

#include<stdio.h>

#include<graphics.h>

struct tree_element

{

char name[20];

int x,y,ftype,lx,rx,nc,level;

struct tree_element *link[5];

};

typedef struct tree_element
node; void main()

{

int gd=DETECT,gm;

node *root;

root=NULL;

clrscr();

create(&root,0,"root",0,639,320);

clrscr();

initgraph(&gd,&gm,"c:\\tc\\BGI");

display(root);

getch();

closegraph();

}

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 47

create(node **root,int lev,char *dname,int lx,int rx,int x)

{

int i,gap;

if(*root==NULL)

{

(*root)=(node *)malloc(sizeof(node));

printf("Enter name of dir/file(under %s) :",dname);

fflush(stdin);

gets((*root)->name);
printf("enter 1 for Dir/2 forfile :");

scanf("%d",&(*root)->ftype);

(*root)->level=lev;

(*root)->y=50+lev*50;

(*root)->x=x;

(*root)->lx=lx;

(*root)->rx=rx;

for(i=0;i<5;i++)

(*root)->link[i]=NULL;
if((*root)->ftype==1)

{
printf("No of sub directories/files(for %s):",(*root)->name); scanf("%d",&(*root)->nc);

if((*root)->nc==0)

gap=rx-lx;

else gap=(rx-lx)/(*root)->nc;
for(i=0;i<(*root)->nc;i++)

create(&((*root)->link[i]),lev+1,(*root)->name,lx+gap*i,lx+gap*i+gap,lx+gap*i+gap/2);

}

else (*root)->nc=0;

}

}

display(node *root)

{
int i;

settextstyle(2,0,4);

settextjustify(1,1);

setfillstyle(1,BLUE);

setcolor(14); if(root!=NULL)

{

for(i=0;i<root->nc;i++)

{

line(root->x,root->y,root->link[i]->x,root->link[i]->y);

}
if(root->ftype==1) bar3d(root->x-20,root->y-10,root->x+20,root->y+10,0,0); else

fillellipse(root->x,root->y,20,20);

outtextxy(root->x,root->y,root->name); for(i=0;i<root->nc;i++)

{

display(root->link[i]);

Prepared By: Prof. Kadve A.R. / Prof. Jadhav A.S. Page 48

}

}

}

OUTPUT:
Enter Name of dir/file (under root): ROOT

Enter 1 for Dir / 2 For File : 1

No of subdirectories / files (for ROOT) :2

Enter Name of dir/file (under ROOT):USER 1

Enter 1 for Dir /2 for file:1

No of subdirectories /files (for USER 1):1
Enter Name of dir/file (under USER 1):SUBDIR

Enter 1 for Dir /2 for file:1

No of subdirectories /files (for SUBDIR):2

Enter Name of dir/file (under USER 1):

JAVA Enter 1 for Dir /2 for file:1

No of subdirectories /files (for JAVA): 0

Enter Name of dir/file (under SUBDIR):VB

Enter 1 for Dir /2 for file:1

No of subdirectories /files (for VB): 0

Enter Name of dir/file (under ROOT):USER2

Enter 1 for Dir /2 for file:1

No of subdirectories /files (for USER2):2

Enter Name of dir/file (under ROOT):A

Enter 1 for Dir /2 for file:2

Enter Name of dir/file (under USER2):SUBDIR 2

Enter 1 for Dir /2 for file:1

No of subdirectories /files (for SUBDIR 2):2

Enter Name of dir/file (under SUBDIR2):PPL

Enter 1 for Dir /2 for file:1

No of subdirectories /files (for PPL):2

Enter Name of dir/file (under PPL):B

Enter 1 for Dir /2 for file:2

Enter Name of dir/file (under PPL):C

Enter 1 for Dir /2 for file:2

Enter Name of dir/file (under SUBDIR):AI

Enter 1 for Dir /2 for file:1

No of subdirectories /files (for AI): 2

Enter Name of dir/file (under AI):D

Enter 1 for Dir /2 for file:2

Enter Name of dir/file (under AI):E

Conclusion: Hence we studied file organization techniques.

	4) Input / Output statements:
	Theory Questions
	EXPERIMENT NO: 1
	Theory:
	The striking features of Procedure-Oriented Programming are:
	The striking features of Object-Oriented Programming are:
	Basic Concepts in Object Oriented Programming:
	Benefits of Object Oriented Programming:
	Output Operator:
	Input Operator:
	PROGRAM -
	OUTPUT
	//program to implement arithmetic operation using c++ language.
	OUTPUT:-
	Experiment No 2
	Theory: (1)
	Objects:
	Classes:
	Inheritance:
	Data Abstraction:
	Data Encapsulation:
	Polymorphism:
	Overloading:
	Reusability:
	A sample program to understand the basic structure of C++
	Overview of the Basic Structure of C++ Programming
	PROGRAM –
	OUTPUT:
	Experiment No: 3
	Theory:- Constructor
	Program
	OUTPUT: (1)
	Experiment No: 4
	Theory:-
	Polymorphism Using Function Overloading:
	Overloaded Constructors:
	Programs:-
	OUTPUT: (2)
	b) Constructor Overloading:
	OUTPUT: (3)
	Experiment No: 5
	Theory:- Overloading Operators
	PROGRAM:- //Programe to overload „+‟ and „>‟ operator
	OUTPUT (1)
	Experiment No 6
	Theory:- (1)
	Features or Advantages of Inheritance:
	Saves Time and Effort:
	Types/Forms of Inheritance
	Simple / Single Inheritance:-
	OUTPUT (2)
	a) Multilevel Inheritance :-
	}OUTPUT
	Experiment No 7
	Theory:- (2)
	PROGRAMME:-
	OUTPUT (3)
	Experiment No 8
	Theory:- (3)
	SYNTAX:-
	PROGRAME:
	OUTPUT (4)
	Experiment No 9
	Theory:- (4)
	Friend Classes
	// Program to implement concept of friend class.
	b) Friend class and function:-
	OUTPUT: (4)
	2) Friend Function:
	OUTPUT (5)
	Experiment No 10
	Theory:- (5)
	Virtual Base Classes
	PROGRAMS :-
	// Program to implement concept of virtual function..
	// Liters to gallons.
	OUTPUT: (5)
	Experiment No 11
	Aim: - To study & implement the concept of File handling. Theory:-
	Characters vs. Bytes:
	put() and get():
	Detecting End-of-File:
	Closing Files:
	Mode Bits for open() Function :
	1) Writing Data:
	OUTPUT (6)
	2) Reading Data:
	OUTPUT (7)
	Experiment No 12
	Theory:- (6)
	Program:-
	OUTPUT (8)
	Experiment No 13
	Theory:- (7)
	Now that‟s what I call a generic waiter - he can balance anything!
	Future Directions:
	// Program to implement generic bubble sort using concept of template .
	OUTPUT (9)
	Experiment No 14
	Theory:- (8)
	// Program to implement Linear Search and Binary Search using function template
	OUTPUT (10)
	Experiment No 15
	Theory:- (9)
	Class Name Depends on Context
	// Program to implement generic stack using template.
	// Push an object.
	}// Pop an object.
	OUTPUT (11)
	Experiment No 16
	Theory:- (10)
	Function Template:
	// Program to implement queue using class template.
	Experiment No 17
	Theory: (2)
	try blocks
	catch blocks :
	Program:
	OUTPUT (12)
	Conclusion:
	Experiment No 18
	Theory: (3)
	Line and Polygon selection routines :
	PROGRAM:
	OUTPUT (13)

